Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby
W.R. Kitzmann, D. Hunger, A.-P.M. Reponen, C. Förster, R. Schoch, M. Bauer, S. Feldmann, J. van Slageren, K. Heinze, Inorganic Chemistry 62 (2023) 15797–15808.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Kitzmann, Winald R.;
Hunger, David;
Reponen, Antti-Pekka M.;
Förster, Christoph;
Schoch, RolandLibreCat ;
Bauer, MatthiasLibreCat ;
Feldmann, Sascha;
van Slageren, Joris;
Heinze, Katja
Department
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N′-dimethyl-N,N′-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Publishing Year
Journal Title
Inorganic Chemistry
Volume
62
Issue
39
Page
15797-15808
LibreCat-ID
Cite this
Kitzmann WR, Hunger D, Reponen A-PM, et al. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorganic Chemistry. 2023;62(39):15797-15808. doi:10.1021/acs.inorgchem.3c02186
Kitzmann, W. R., Hunger, D., Reponen, A.-P. M., Förster, C., Schoch, R., Bauer, M., Feldmann, S., van Slageren, J., & Heinze, K. (2023). Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorganic Chemistry, 62(39), 15797–15808. https://doi.org/10.1021/acs.inorgchem.3c02186
@article{Kitzmann_Hunger_Reponen_Förster_Schoch_Bauer_Feldmann_van Slageren_Heinze_2023, title={Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby}, volume={62}, DOI={10.1021/acs.inorgchem.3c02186}, number={39}, journal={Inorganic Chemistry}, publisher={American Chemical Society (ACS)}, author={Kitzmann, Winald R. and Hunger, David and Reponen, Antti-Pekka M. and Förster, Christoph and Schoch, Roland and Bauer, Matthias and Feldmann, Sascha and van Slageren, Joris and Heinze, Katja}, year={2023}, pages={15797–15808} }
Kitzmann, Winald R., David Hunger, Antti-Pekka M. Reponen, Christoph Förster, Roland Schoch, Matthias Bauer, Sascha Feldmann, Joris van Slageren, and Katja Heinze. “Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby.” Inorganic Chemistry 62, no. 39 (2023): 15797–808. https://doi.org/10.1021/acs.inorgchem.3c02186.
W. R. Kitzmann et al., “Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby,” Inorganic Chemistry, vol. 62, no. 39, pp. 15797–15808, 2023, doi: 10.1021/acs.inorgchem.3c02186.
Kitzmann, Winald R., et al. “Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby.” Inorganic Chemistry, vol. 62, no. 39, American Chemical Society (ACS), 2023, pp. 15797–808, doi:10.1021/acs.inorgchem.3c02186.