Non-abelian $p$-adic Rankin-Selberg $L$-functions and non-vanishing of central $L$-values

F. Januszewski, American Journal of Mathematics 146 (2024) 495–578.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
We prove new congruences between special values of Rankin-Selberg $L$-functions for $\mathrm{GL}(n+1)\times\mathrm{GL}(n)$ over arbitrary number fields. This allows us to control the behavior of $p$-adic $L$-functions under Tate twists and to prove the existence of non-abelian $p$-adic $L$-functions for Hida families on $\mathrm{GL}(n+1)\times\mathrm{GL}(n)$. As an application, we prove strong non-vanishing results for central $L$-values: We give sufficient local conditions for twisted central Rankin-Selberg $L$-values to be generically non-zero.
Publishing Year
Journal Title
American Journal of Mathematics
Volume
146
Issue
2
Page
495-578
ISSN
LibreCat-ID

Cite this

Januszewski F. Non-abelian $p$-adic Rankin-Selberg $L$-functions and non-vanishing of  central $L$-values. American Journal of Mathematics. 2024;146(2):495-578.
Januszewski, F. (2024). Non-abelian $p$-adic Rankin-Selberg $L$-functions and non-vanishing of  central $L$-values. American Journal of Mathematics, 146(2), 495–578.
@article{Januszewski_2024, title={Non-abelian $p$-adic Rankin-Selberg $L$-functions and non-vanishing of  central $L$-values}, volume={146}, number={2}, journal={American Journal of Mathematics}, publisher={Johns Hopkins University, Johns Hopkins University Press}, author={Januszewski, Fabian}, year={2024}, pages={495–578} }
Januszewski, Fabian. “Non-Abelian $p$-Adic Rankin-Selberg $L$-Functions and Non-Vanishing of  Central $L$-Values.” American Journal of Mathematics 146, no. 2 (2024): 495–578.
F. Januszewski, “Non-abelian $p$-adic Rankin-Selberg $L$-functions and non-vanishing of  central $L$-values,” American Journal of Mathematics, vol. 146, no. 2, pp. 495–578, 2024.
Januszewski, Fabian. “Non-Abelian $p$-Adic Rankin-Selberg $L$-Functions and Non-Vanishing of  Central $L$-Values.” American Journal of Mathematics, vol. 146, no. 2, Johns Hopkins University, Johns Hopkins University Press, 2024, pp. 495–578.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 1708.02616

Search this title in

Google Scholar