L-functions of GL(2n): p-adic properties and non-vanishing of twists

M. Dimitrov, F. Januszewski, A. Raghuram, Compositio Mathematica 156 (2021) 2437–2468.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Dimitrov, Mladen; Januszewski, FabianLibreCat; Raghuram, A.
Abstract
<jats:p>The principal aim of this article is to attach and study <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline4.png" /><jats:tex-math>$p$</jats:tex-math></jats:alternatives></jats:inline-formula>-adic <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline5.png" /><jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-functions to cohomological cuspidal automorphic representations <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline6.png" /><jats:tex-math>$\Pi$</jats:tex-math></jats:alternatives></jats:inline-formula> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline7.png" /><jats:tex-math>$\operatorname {GL}_{2n}$</jats:tex-math></jats:alternatives></jats:inline-formula> over a totally real field <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline8.png" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula> admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive because we draw heavily upon the methods used in the recent and separate works of all three authors. By construction, our <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline9.png" /><jats:tex-math>$p$</jats:tex-math></jats:alternatives></jats:inline-formula>-adic <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline10.png" /><jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-functions are distributions on the Galois group of the maximal abelian extension of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline11.png" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula> unramified outside <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline12.png" /><jats:tex-math>$p\infty$</jats:tex-math></jats:alternatives></jats:inline-formula>. Moreover, we work under a weaker Panchishkine-type condition on <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline13.png" /><jats:tex-math>$\Pi _p$</jats:tex-math></jats:alternatives></jats:inline-formula> rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline14.png" /><jats:tex-math>$p$</jats:tex-math></jats:alternatives></jats:inline-formula>-adic <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline15.png" /><jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-functions at <jats:italic>all</jats:italic> critical points. This has the striking consequence that, given a unitary <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline16.png" /><jats:tex-math>$\Pi$</jats:tex-math></jats:alternatives></jats:inline-formula> whose standard <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline17.png" /><jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-function admits at least two critical points, and given a prime <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline18.png" /><jats:tex-math>$p$</jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline19.png" /><jats:tex-math>$\Pi _p$</jats:tex-math></jats:alternatives></jats:inline-formula> is ordinary, the central critical value <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline20.png" /><jats:tex-math>$L(\frac {1}{2}, \Pi \otimes \chi )$</jats:tex-math></jats:alternatives></jats:inline-formula> is non-zero for all except finitely many Dirichlet characters <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline21.png" /><jats:tex-math>$\chi$</jats:tex-math></jats:alternatives></jats:inline-formula> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0010437X20007551_inline22.png" /><jats:tex-math>$p$</jats:tex-math></jats:alternatives></jats:inline-formula>-power conductor.</jats:p>
Publishing Year
Journal Title
Compositio Mathematica
Volume
156
Issue
12
Page
2437-2468
LibreCat-ID

Cite this

Dimitrov M, Januszewski F, Raghuram A. L-functions of GL(2n): p-adic properties and non-vanishing of twists. Compositio Mathematica. 2021;156(12):2437-2468. doi:10.1112/s0010437x20007551
Dimitrov, M., Januszewski, F., & Raghuram, A. (2021). L-functions of GL(2n): p-adic properties and non-vanishing of twists. Compositio Mathematica, 156(12), 2437–2468. https://doi.org/10.1112/s0010437x20007551
@article{Dimitrov_Januszewski_Raghuram_2021, title={L-functions of GL(2n): p-adic properties and non-vanishing of twists}, volume={156}, DOI={10.1112/s0010437x20007551}, number={12}, journal={Compositio Mathematica}, publisher={Wiley}, author={Dimitrov, Mladen and Januszewski, Fabian and Raghuram, A.}, year={2021}, pages={2437–2468} }
Dimitrov, Mladen, Fabian Januszewski, and A. Raghuram. “L-Functions of GL(2n): P-Adic Properties and Non-Vanishing of Twists.” Compositio Mathematica 156, no. 12 (2021): 2437–68. https://doi.org/10.1112/s0010437x20007551.
M. Dimitrov, F. Januszewski, and A. Raghuram, “L-functions of GL(2n): p-adic properties and non-vanishing of twists,” Compositio Mathematica, vol. 156, no. 12, pp. 2437–2468, 2021, doi: 10.1112/s0010437x20007551.
Dimitrov, Mladen, et al. “L-Functions of GL(2n): P-Adic Properties and Non-Vanishing of Twists.” Compositio Mathematica, vol. 156, no. 12, Wiley, 2021, pp. 2437–68, doi:10.1112/s0010437x20007551.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar