Scalable quantum detector tomography by high-performance computing

T. Schapeler, R. Schade, M. Lass, C. Plessl, T. Bartley, ArXiv:2404.02844 (2024).

Download
No fulltext has been uploaded.
Preprint | English
Abstract
At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyse these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterising their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterisation and certification tasks. By developing open-source customised algorithms using high-performance computing, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of $10^6$. This requires finding $10^8$ elements of the matrix corresponding to the positive operator valued measure (POVM), the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of $10^{12}$ elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.
Publishing Year
Journal Title
arXiv:2404.02844
LibreCat-ID

Cite this

Schapeler T, Schade R, Lass M, Plessl C, Bartley T. Scalable quantum detector tomography by high-performance computing. arXiv:240402844. Published online 2024.
Schapeler, T., Schade, R., Lass, M., Plessl, C., & Bartley, T. (2024). Scalable quantum detector tomography by high-performance computing. In arXiv:2404.02844.
@article{Schapeler_Schade_Lass_Plessl_Bartley_2024, title={Scalable quantum detector tomography by high-performance computing}, journal={arXiv:2404.02844}, author={Schapeler, Timon and Schade, Robert and Lass, Michael and Plessl, Christian and Bartley, Tim}, year={2024} }
Schapeler, Timon, Robert Schade, Michael Lass, Christian Plessl, and Tim Bartley. “Scalable Quantum Detector Tomography by High-Performance Computing.” ArXiv:2404.02844, 2024.
T. Schapeler, R. Schade, M. Lass, C. Plessl, and T. Bartley, “Scalable quantum detector tomography by high-performance computing,” arXiv:2404.02844. 2024.
Schapeler, Timon, et al. “Scalable Quantum Detector Tomography by High-Performance Computing.” ArXiv:2404.02844, 2024.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2404.02844

Search this title in

Google Scholar