Exponential grow-up rates in a quasilinear Keller–Segel system

M. Winkler, Asymptotic Analysis 131 (2022) 33–57.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Winkler, Michael
Abstract
<jats:p>The chemotaxis system ( ⋆ ) u t = ∇ · ( D ( u ) ∇ u ) − ∇ · ( u S ( u ) ∇ v ) , 0 = Δ v − μ + u , μ = 1 | Ω | ∫ Ω u , is considered in a ball Ω = B R ( 0 ) ⊂ R n . It is shown that if S ∈ C 2 ( [ 0 , ∞ ) ) suitably generalizes the prototype given by S ( ξ ) = χ ξ + 1 , ξ ⩾ 0 , with some χ &gt; 0, and if diffusion is suitably weak in the sense that 0 &lt; D ∈ C 2 ( ( 0 , ∞ ) ) is such that there exist K D &gt; 0 and m ∈ ( − ∞ , 1 − 2 n ) fulfilling D ( ξ ) ⩽ K D ξ m − 1 for all  ξ &gt; 0 , then for appropriate choices of sufficiently concentrated initial data, an associated no-flux initial-boundary value problem admits a global classical solution ( u , v ) which blows up in infinite time and satisfies 1 C e χ t ⩽ ‖ u ( · , t ) ‖ L ∞ ( Ω ) ⩽ C e χ t for all  t &gt; 0 . A major part of the proof is based on a comparison argument involving explicitly constructed subsolutions to a scalar parabolic problem satisfied by mass accumulation functions corresponding to solutions of (⋆).</jats:p>
Publishing Year
Journal Title
Asymptotic Analysis
Volume
131
Issue
1
Page
33-57
LibreCat-ID

Cite this

Winkler M. Exponential grow-up rates in a quasilinear Keller–Segel system. Asymptotic Analysis. 2022;131(1):33-57. doi:10.3233/asy-221765
Winkler, M. (2022). Exponential grow-up rates in a quasilinear Keller–Segel system. Asymptotic Analysis, 131(1), 33–57. https://doi.org/10.3233/asy-221765
@article{Winkler_2022, title={Exponential grow-up rates in a quasilinear Keller–Segel system}, volume={131}, DOI={10.3233/asy-221765}, number={1}, journal={Asymptotic Analysis}, publisher={IOS Press}, author={Winkler, Michael}, year={2022}, pages={33–57} }
Winkler, Michael. “Exponential Grow-up Rates in a Quasilinear Keller–Segel System.” Asymptotic Analysis 131, no. 1 (2022): 33–57. https://doi.org/10.3233/asy-221765.
M. Winkler, “Exponential grow-up rates in a quasilinear Keller–Segel system,” Asymptotic Analysis, vol. 131, no. 1, pp. 33–57, 2022, doi: 10.3233/asy-221765.
Winkler, Michael. “Exponential Grow-up Rates in a Quasilinear Keller–Segel System.” Asymptotic Analysis, vol. 131, no. 1, IOS Press, 2022, pp. 33–57, doi:10.3233/asy-221765.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar