$L^2$-spectrum, growth indicator function and critical exponent on locally symmetric spaces
L.L. Wolf, H.-W. Zhang, ArXiv:2311.11770 (2023).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Wolf, Lasse L.;
Zhang, Hong-Wei
Department
Abstract
In this short note we observe, on locally symmetric spaces of higher rank, a
connection between the growth indicator function introduced by Quint and the
modified critical exponent of the Poincar\'e series equipped with the
polyhedral distance. As a consequence, we provide a different characterization
of the bottom of the $L^2$-spectrum of the Laplace-Beltrami operator in terms
of the growth indicator function. Moreover, we explore the relationship between
these three objects and the temperedness.
Publishing Year
Journal Title
arXiv:2311.11770
LibreCat-ID
Cite this
Wolf LL, Zhang H-W. $L^2$-spectrum, growth indicator function and critical exponent on locally symmetric spaces. arXiv:231111770. Published online 2023.
Wolf, L. L., & Zhang, H.-W. (2023). $L^2$-spectrum, growth indicator function and critical exponent on locally symmetric spaces. In arXiv:2311.11770.
@article{Wolf_Zhang_2023, title={$L^2$-spectrum, growth indicator function and critical exponent on locally symmetric spaces}, journal={arXiv:2311.11770}, author={Wolf, Lasse L. and Zhang, Hong-Wei}, year={2023} }
Wolf, Lasse L., and Hong-Wei Zhang. “$L^2$-Spectrum, Growth Indicator Function and Critical Exponent on Locally Symmetric Spaces.” ArXiv:2311.11770, 2023.
L. L. Wolf and H.-W. Zhang, “$L^2$-spectrum, growth indicator function and critical exponent on locally symmetric spaces,” arXiv:2311.11770. 2023.
Wolf, Lasse L., and Hong-Wei Zhang. “$L^2$-Spectrum, Growth Indicator Function and Critical Exponent on Locally Symmetric Spaces.” ArXiv:2311.11770, 2023.