A Riemann-Roch formula for singular reductions by circle actions
B. Delarue, L. Ioos, P. Ramacher, ArXiv:2302.09894 (2023).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Delarue, BenjaminLibreCat;
Ioos, Louis;
Ramacher, Pablo
Department
Abstract
We compute a Riemann-Roch formula for the invariant Riemann-Roch number of a
quantizable Hamiltonian $S^1$-manifold $(M,\omega,\mathcal{J})$ in terms of the
geometry of its symplectic quotient, allowing $0$ to be a singular value of the
moment map $\mathcal{J}:M\to\mathbb{R}$. The formula involves a new explicit
local invariant of the singularities. Our approach relies on a complete
singular stationary phase expansion of the associated Witten integral.
Publishing Year
Journal Title
arXiv:2302.09894
LibreCat-ID
Cite this
Delarue B, Ioos L, Ramacher P. A Riemann-Roch formula for singular reductions by circle actions. arXiv:230209894. Published online 2023.
Delarue, B., Ioos, L., & Ramacher, P. (2023). A Riemann-Roch formula for singular reductions by circle actions. In arXiv:2302.09894.
@article{Delarue_Ioos_Ramacher_2023, title={A Riemann-Roch formula for singular reductions by circle actions}, journal={arXiv:2302.09894}, author={Delarue, Benjamin and Ioos, Louis and Ramacher, Pablo}, year={2023} }
Delarue, Benjamin, Louis Ioos, and Pablo Ramacher. “A Riemann-Roch Formula for Singular Reductions by Circle Actions.” ArXiv:2302.09894, 2023.
B. Delarue, L. Ioos, and P. Ramacher, “A Riemann-Roch formula for singular reductions by circle actions,” arXiv:2302.09894. 2023.
Delarue, Benjamin, et al. “A Riemann-Roch Formula for Singular Reductions by Circle Actions.” ArXiv:2302.09894, 2023.