Malle's conjecture with multiple invariants
F. Gundlach, ArXiv:2211.16698 (2022).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Abstract
We define invariants $\operatorname{inv}_1,\dots,\operatorname{inv}_m$ of
Galois extensions of number fields with a fixed Galois group. Then, we propose
a heuristic in the spirit of Malle's conjecture which asymptotically predicts
the number of extensions that satisfy $\operatorname{inv}_i\leq X_i$ for all
$X_i$. The resulting conjecture is proved for abelian Galois groups. We also
describe refined Artin conductors that carry essentially the same information
as the invariants $\operatorname{inv}_1,\dots,\operatorname{inv}_m$.
Publishing Year
Journal Title
arXiv:2211.16698
LibreCat-ID
Cite this
Gundlach F. Malle’s conjecture with multiple invariants. arXiv:221116698. Published online 2022.
Gundlach, F. (2022). Malle’s conjecture with multiple invariants. In arXiv:2211.16698.
@article{Gundlach_2022, title={Malle’s conjecture with multiple invariants}, journal={arXiv:2211.16698}, author={Gundlach, Fabian}, year={2022} }
Gundlach, Fabian. “Malle’s Conjecture with Multiple Invariants.” ArXiv:2211.16698, 2022.
F. Gundlach, “Malle’s conjecture with multiple invariants,” arXiv:2211.16698. 2022.
Gundlach, Fabian. “Malle’s Conjecture with Multiple Invariants.” ArXiv:2211.16698, 2022.