Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces

E. Papageorgiou, Journal of Evolution Equations 24 (2024).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
<jats:title>Abstract</jats:title><jats:p>This work deals with the extension problem for the fractional Laplacian on Riemannian symmetric spaces <jats:italic>G</jats:italic>/<jats:italic>K</jats:italic> of noncompact type and of general rank, which gives rise to a family of convolution operators, including the Poisson operator. More precisely, motivated by Euclidean results for the Poisson semigroup, we study the long-time asymptotic behavior of solutions to the extension problem for <jats:inline-formula><jats:alternatives><jats:tex-math>$$L^1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> initial data. In the case of the Laplace–Beltrami operator, we show that if the initial data are bi-<jats:italic>K</jats:italic>-invariant, then the solution to the extension problem behaves asymptotically as the mass times the fundamental solution, but this convergence may break down in the non-bi-<jats:italic>K</jats:italic>-invariant case. In the second part, we investigate the long-time asymptotic behavior of the extension problem associated with the so-called distinguished Laplacian on <jats:italic>G</jats:italic>/<jats:italic>K</jats:italic>. In this case, we observe phenomena which are similar to the Euclidean setting for the Poisson semigroup, such as <jats:inline-formula><jats:alternatives><jats:tex-math>$$L^1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> asymptotic convergence without the assumption of bi-<jats:italic>K</jats:italic>-invariance.</jats:p>
Publishing Year
Journal Title
Journal of Evolution Equations
Volume
24
Issue
2
Article Number
34
LibreCat-ID

Cite this

Papageorgiou E. Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces. Journal of Evolution Equations. 2024;24(2). doi:10.1007/s00028-024-00959-6
Papageorgiou, E. (2024). Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces. Journal of Evolution Equations, 24(2), Article 34. https://doi.org/10.1007/s00028-024-00959-6
@article{Papageorgiou_2024, title={Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces}, volume={24}, DOI={10.1007/s00028-024-00959-6}, number={234}, journal={Journal of Evolution Equations}, publisher={Springer Science and Business Media LLC}, author={Papageorgiou, Efthymia}, year={2024} }
Papageorgiou, Efthymia. “Asymptotic Behavior of Solutions to the Extension Problem for the Fractional Laplacian on Noncompact Symmetric Spaces.” Journal of Evolution Equations 24, no. 2 (2024). https://doi.org/10.1007/s00028-024-00959-6.
E. Papageorgiou, “Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces,” Journal of Evolution Equations, vol. 24, no. 2, Art. no. 34, 2024, doi: 10.1007/s00028-024-00959-6.
Papageorgiou, Efthymia. “Asymptotic Behavior of Solutions to the Extension Problem for the Fractional Laplacian on Noncompact Symmetric Spaces.” Journal of Evolution Equations, vol. 24, no. 2, 34, Springer Science and Business Media LLC, 2024, doi:10.1007/s00028-024-00959-6.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar