Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current
K. Yang, B. El-Sari, V. Olfert, Z. Wang, M. Biegler, M. Rethmeier, G. Meschut, Journal of Manufacturing Processes 124 (2024) 489–502.
Download
1-s2.0-S1526612524006145-main.pdf
12.43 MB
Journal Article
| Published
| English
Author
Yang, KekeLibreCat ;
El-Sari, Bassel;
Olfert, ViktoriaLibreCat;
Wang, Zhuoqun;
Biegler, Max;
Rethmeier, Michael;
Meschut, GersonLibreCat
Department
Abstract
The widespread adoption of ultra-high strength steels, due to their high bulk resistivity, intensifies expulsion issues in resistance spot welding (RSW), deteriorating both the spot weld and surface quality. This study presents a novel approach to prevent expulsion by employing a preheating current. Through characteristic analysis of joint formation under critical welding current, the importance of plastic material encapsulation around the weld nugget (plastic shell) at high temperatures in preventing expulsion is highlighted. To evaluate the effect of preheating on the plastic shell and understand its mechanism in expulsion prevention, a two-dimensional welding simulation model for dissimilar ultra-high strength steel joints was established. The results showed that optimal preheating enhances the thickness of the plastic shell, improving its ability to encapsulate the weld nugget during the primary welding phase, thereby diminishing expulsion risks. Experimental validation confirmed that by employing the optimal preheating current, the maximum nugget diameter was enhanced to 9.42 mm, marking an increase of 13.4 % and extending the weldable current range by 27.5 %. Under quasi-static cross-tensile loading, joints with preheating demonstrated a 7.9 % enhancement in maximum load-bearing capacity compared to joints without preheating, showing a reproducible and complete pull-out failure mode within the heat-affected zone. This study offers a prevention method based on underlying mechanisms, providing a new perspective for future research on welding parameter optimization with the aim of expulsion prevention.
Publishing Year
Journal Title
Journal of Manufacturing Processes
Volume
124
Page
489-502
ISSN
LibreCat-ID
Cite this
Yang K, El-Sari B, Olfert V, et al. Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current. Journal of Manufacturing Processes. 2024;124:489-502. doi:10.1016/j.jmapro.2024.06.034
Yang, K., El-Sari, B., Olfert, V., Wang, Z., Biegler, M., Rethmeier, M., & Meschut, G. (2024). Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current. Journal of Manufacturing Processes, 124, 489–502. https://doi.org/10.1016/j.jmapro.2024.06.034
@article{Yang_El-Sari_Olfert_Wang_Biegler_Rethmeier_Meschut_2024, title={Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current}, volume={124}, DOI={10.1016/j.jmapro.2024.06.034}, journal={Journal of Manufacturing Processes}, publisher={Elsevier BV}, author={Yang, Keke and El-Sari, Bassel and Olfert, Viktoria and Wang, Zhuoqun and Biegler, Max and Rethmeier, Michael and Meschut, Gerson}, year={2024}, pages={489–502} }
Yang, Keke, Bassel El-Sari, Viktoria Olfert, Zhuoqun Wang, Max Biegler, Michael Rethmeier, and Gerson Meschut. “Expulsion Prevention in Resistance Spot Welding of Dissimilar Joints with Ultra-High Strength Steel: An Analysis of the Mechanism and Effect of Preheating Current.” Journal of Manufacturing Processes 124 (2024): 489–502. https://doi.org/10.1016/j.jmapro.2024.06.034.
K. Yang et al., “Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current,” Journal of Manufacturing Processes, vol. 124, pp. 489–502, 2024, doi: 10.1016/j.jmapro.2024.06.034.
Yang, Keke, et al. “Expulsion Prevention in Resistance Spot Welding of Dissimilar Joints with Ultra-High Strength Steel: An Analysis of the Mechanism and Effect of Preheating Current.” Journal of Manufacturing Processes, vol. 124, Elsevier BV, 2024, pp. 489–502, doi:10.1016/j.jmapro.2024.06.034.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
1-s2.0-S1526612524006145-main.pdf
12.43 MB
Access Level
Closed Access
Last Uploaded
2024-06-23T21:59:20Z
Link(s) to Main File(s)
Access Level
Closed Access