UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs

D. Vollmers, N. Srivastava, H.M.A. Zahera, D. Moussallem, A.-C. Ngonga Ngomo, in: M. Alam, M. Rospocher, M. van Erp, L. Hollink, G.A. Gesese (Eds.), Knowledge Engineering and Knowledge Management, Springer Nature Switzerland, Cham, 2025, pp. 174–189.

Download
No fulltext has been uploaded.
Conference Paper | English
Editor
Alam, Mehwish; Rospocher, Marco; van Erp, Marieke; Hollink, Laura; Gesese, Genet Asefa
Abstract
Generating SPARQL queries is crucial for extracting relevant information from diverse knowledge graphs. However, the structural and semantic differences among these graphs necessitate training or fine-tuning a tailored model for each one. In this paper, we propose UniQ-Gen, a unified query generation approach to generate SPARQL queries across various knowledge graphs. UniQ-Gen integrates entity recognition, disambiguation, and linking through a BERT-NER model and employs cross-encoder ranking to align questions with the Freebase ontology. We conducted several experiments on different benchmark datasets such as LC-QuAD 2.0, GrailQA, and QALD-10. The evaluation results demonstrate that our approach achieves performance equivalent to or better than models fine-tuned for individual knowledge graphs. This finding suggests that fine-tuning a unified model on a heterogeneous dataset of SPARQL queries across different knowledge graphs eliminates the need for separate models for each graph, thereby reducing resource requirements.
Publishing Year
Proceedings Title
Knowledge Engineering and Knowledge Management
Page
174–189
LibreCat-ID

Cite this

Vollmers D, Srivastava N, Zahera HMA, Moussallem D, Ngonga Ngomo A-C. UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs. In: Alam M, Rospocher M, van Erp M, Hollink L, Gesese GA, eds. Knowledge Engineering and Knowledge Management. Springer Nature Switzerland; 2025:174–189. doi:https://doi.org/10.1007/978-3-031-77792-9_11
Vollmers, D., Srivastava, N., Zahera, H. M. A., Moussallem, D., & Ngonga Ngomo, A.-C. (2025). UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs. In M. Alam, M. Rospocher, M. van Erp, L. Hollink, & G. A. Gesese (Eds.), Knowledge Engineering and Knowledge Management (pp. 174–189). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-77792-9_11
@inproceedings{Vollmers_Srivastava_Zahera_Moussallem_Ngonga Ngomo_2025, place={Cham}, title={UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs}, DOI={https://doi.org/10.1007/978-3-031-77792-9_11}, booktitle={Knowledge Engineering and Knowledge Management}, publisher={Springer Nature Switzerland}, author={Vollmers, Daniel and Srivastava, Nikit and Zahera, Hamada Mohamed Abdelsamee and Moussallem, Diego and Ngonga Ngomo, Axel-Cyrille}, editor={Alam, Mehwish and Rospocher, Marco and van Erp, Marieke and Hollink, Laura and Gesese, Genet Asefa}, year={2025}, pages={174–189} }
Vollmers, Daniel, Nikit Srivastava, Hamada Mohamed Abdelsamee Zahera, Diego Moussallem, and Axel-Cyrille Ngonga Ngomo. “UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs.” In Knowledge Engineering and Knowledge Management, edited by Mehwish Alam, Marco Rospocher, Marieke van Erp, Laura Hollink, and Genet Asefa Gesese, 174–189. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-77792-9_11.
D. Vollmers, N. Srivastava, H. M. A. Zahera, D. Moussallem, and A.-C. Ngonga Ngomo, “UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs,” in Knowledge Engineering and Knowledge Management, 2025, pp. 174–189, doi: https://doi.org/10.1007/978-3-031-77792-9_11.
Vollmers, Daniel, et al. “UniQ-Gen: Unified Query Generation Across Multiple Knowledge Graphs.” Knowledge Engineering and Knowledge Management, edited by Mehwish Alam et al., Springer Nature Switzerland, 2025, pp. 174–189, doi:https://doi.org/10.1007/978-3-031-77792-9_11.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar
ISBN Search