Modeling and optimization of energy system components equipped with phase change materials
M. Grabo, Modeling and Optimization of Energy System Components Equipped with Phase Change Materials, Paderborn, 2025.
Download
No fulltext has been uploaded.
Dissertation
| Published
| English
Author
Supervisor
Department
Abstract
Diese Arbeit behandelt die Modellierung und Optimierung von mit Phasenwechselmaterialien (PCM) ausgestatteten, energietechnischen Komponenten anhand zweier Fallstudien. PCM sind Materialien, deren Phasenwechseleigenschaften während des Schmelzens und Erstarrens für Heiz- und Kühlzwecke genutzt werden. Zunächst werden die theoretischen Grundlagen zu Wärmeübertragungsproblemen mit Phasenwechsel erörtert und entsprechende numerische Lösungsmethoden diskutiert. Ein Modell für Phasenwechselvorgänge wird vorgestellt, welches anhand analytischer Lösungen validiert wurde und in den Fallstudien zum Einsatz kam. Für beide Fallstudien wird der Stand der Technik erörtert und die entsprechenden Forschungsfragen werden formuliert. Die erste Fallstudie behandelt PCM-integrierte Photovoltaikmodule und die zweite Festbett-Latentwärmespeicher, welche nicht-kugelförmiger PCM-Kapseln verwenden. Für beide Systeme wurden thermische Model-le entwickelt und anhand experimenteller Daten mit guter Genauigkeit validiert. Diese Modelle wurden in Parameterstudien eingesetzt, um optimierte Systemkonfigurationen zu identifizieren. Die vorgestellten Ergebnisse zeigen, dass ein PCM-Kühlkörper mit ausreichender Dicke und Wärmeleitfähigkeit den Wirkungsgrad und die Lebensdauer von Photovoltaikmodulen erheblich erhöht. Darüber hinaus verbessern PCM-Kapseln mit hoher Packungs-dichte und Oberfläche sowohl die volumenspezifische Speicherkapazität als auch die thermische Leistung von Festbett-Latentwärmespeichern.
This thesis explores the modeling and optimization of energy system components incorporating phase change materials (PCM) through two different case studies. PCM are materials whose phase change characteristics during melting and solidification are utilized for heating and cooling purposes. The theoretical foundations of heat transfer problems involving phase change, along with the relevant numerical solution methods, are discussed. A phase change model is presented, which was validated against analytical solutions and applied in the case studies. For both case studies, a review of the state of the art is provided, followed by the formulation of specific research problems. The first case study investigated PCM-enhanced photovoltaic modules, while the second focused on packed bed latent heat storages (PBLHS) utilizing non-spherical PCM capsules. Thermal models were developed for both systems and validated with good accuracy against experimental data. These models were employed in parameter studies to identify optimized system configurations. The presented results demonstrate that a PCM heat sink with sufficient thickness and thermal conductivity can significantly improve the efficiency and lifespan of photovoltaic modules. Furthermore, PCM capsules with both high packing density and surface area increase the volume-specific storage capacity and thermal power output of PBLHS.
This thesis explores the modeling and optimization of energy system components incorporating phase change materials (PCM) through two different case studies. PCM are materials whose phase change characteristics during melting and solidification are utilized for heating and cooling purposes. The theoretical foundations of heat transfer problems involving phase change, along with the relevant numerical solution methods, are discussed. A phase change model is presented, which was validated against analytical solutions and applied in the case studies. For both case studies, a review of the state of the art is provided, followed by the formulation of specific research problems. The first case study investigated PCM-enhanced photovoltaic modules, while the second focused on packed bed latent heat storages (PBLHS) utilizing non-spherical PCM capsules. Thermal models were developed for both systems and validated with good accuracy against experimental data. These models were employed in parameter studies to identify optimized system configurations. The presented results demonstrate that a PCM heat sink with sufficient thickness and thermal conductivity can significantly improve the efficiency and lifespan of photovoltaic modules. Furthermore, PCM capsules with both high packing density and surface area increase the volume-specific storage capacity and thermal power output of PBLHS.
Keywords
Publishing Year
LibreCat-ID
Cite this
Grabo M. Modeling and Optimization of Energy System Components Equipped with Phase Change Materials.; 2025. doi:10.17619/UNIPB/1-2199
Grabo, M. (2025). Modeling and optimization of energy system components equipped with phase change materials. https://doi.org/10.17619/UNIPB/1-2199
@book{Grabo_2025, place={Paderborn}, title={Modeling and optimization of energy system components equipped with phase change materials}, DOI={10.17619/UNIPB/1-2199}, author={Grabo, Matti}, year={2025} }
Grabo, Matti. Modeling and Optimization of Energy System Components Equipped with Phase Change Materials. Paderborn, 2025. https://doi.org/10.17619/UNIPB/1-2199.
M. Grabo, Modeling and optimization of energy system components equipped with phase change materials. Paderborn, 2025.
Grabo, Matti. Modeling and Optimization of Energy System Components Equipped with Phase Change Materials. 2025, doi:10.17619/UNIPB/1-2199.