Distilling Efficient Audio Models using Data Pruning with CLAP

A. Werning, R. Haeb-Umbach, in: Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025 (Ed.), Proceedings of DAS|DAGA 2025, Copenhagen, 2025.

Download
No fulltext has been uploaded.
Conference Paper | Published | English
Author
Werning, Alexander; Haeb-Umbach, Reinhold
Corporate Editor
Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025
Abstract
Running state-of-the-art large-scale audio models on edge devices is often infeasible due to their limited storage and computing resources. It is therefore necessary to compress and tune the models for the specific target task and hardware. This is commonly achieved by distilling the audio model, the teacher, to a small target model, the student. However, this approach can be improved by prepending a dataset pruning stage and training the teacher on the pruned data set only, which contains examples relevant to the target task. Recently, CLAP models have emerged that embed audio and text examples in a common embedding space. We use the audio embeddings of the CLAP model for the above pruning stage, which is realized using a domain classifier. After knowledge distillation, the student is eventually fine-tuned on some data from the target domain. The CLAP architecture combines text and audio embedding spaces, which allows to search for data given only a textual description, such as a class label. We show how this can help data pruning.
Publishing Year
Proceedings Title
Proceedings of DAS|DAGA 2025
Conference
DAS|DAGA 2025 - 51st Annual Meeting on Acoustics
Conference Location
Copenhagen
Conference Date
2025-03-17 – 2025-03-20
LibreCat-ID

Cite this

Werning A, Haeb-Umbach R. Distilling Efficient Audio Models using Data Pruning with CLAP. In: Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025, ed. Proceedings of DAS|DAGA 2025. ; 2025. doi:10.71568/DASDAGA2025.149
Werning, A., & Haeb-Umbach, R. (2025). Distilling Efficient Audio Models using Data Pruning with CLAP. In Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025 (Ed.), Proceedings of DAS|DAGA 2025. https://doi.org/10.71568/DASDAGA2025.149
@inproceedings{Werning_Haeb-Umbach_2025, place={Copenhagen}, title={Distilling Efficient Audio Models using Data Pruning with CLAP}, DOI={10.71568/DASDAGA2025.149}, booktitle={Proceedings of DAS|DAGA 2025}, author={Werning, Alexander and Haeb-Umbach, Reinhold}, editor={Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025}, year={2025} }
Werning, Alexander, and Reinhold Haeb-Umbach. “Distilling Efficient Audio Models Using Data Pruning with CLAP.” In Proceedings of DAS|DAGA 2025, edited by Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025. Copenhagen, 2025. https://doi.org/10.71568/DASDAGA2025.149.
A. Werning and R. Haeb-Umbach, “Distilling Efficient Audio Models using Data Pruning with CLAP,” in Proceedings of DAS|DAGA 2025, Copenhagen, 2025, doi: 10.71568/DASDAGA2025.149.
Werning, Alexander, and Reinhold Haeb-Umbach. “Distilling Efficient Audio Models Using Data Pruning with CLAP.” Proceedings of DAS|DAGA 2025, edited by Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, 2025, 2025, doi:10.71568/DASDAGA2025.149.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar