Counting of Teams in First-Order Team Logics
A. Haak, J. Kontinen, F. Müller, H. Vollmer, F. Yang, ACM Transactions on Computational Logic (2025).
Download
No fulltext has been uploaded.
DOI
Journal Article
| Published
| English
Author
Haak, AnselmLibreCat;
Kontinen, Juha;
Müller, Fabian;
Vollmer, Heribert;
Yang, Fan
Department
Abstract
<jats:p>
We study descriptive complexity of counting complexity classes in the range from #P to
<jats:inline-formula content-type="math/tex">
<jats:tex-math notation="LaTeX" version="MathJax">\({\text{#}\!\cdot\!\text{NP}}\)</jats:tex-math>
</jats:inline-formula>
. The proof of Fagin’s characterization of NP by existential second-order logic generalizes to the counting setting in the following sense: The class #P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. This was first observed by Saluja et al. (1995). In this paper we extend this study to classes beyond #P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of first-order logic in Tarski’s semantics. Our results show that the class
<jats:inline-formula content-type="math/tex">
<jats:tex-math notation="LaTeX" version="MathJax">\({\text{#}\!\cdot\!\text{NP}}\)</jats:tex-math>
</jats:inline-formula>
can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of
<jats:inline-formula content-type="math/tex">
<jats:tex-math notation="LaTeX" version="MathJax">\({\text{#}\!\cdot\!\text{NP}}\)</jats:tex-math>
</jats:inline-formula>
and #P , respectively. We further relate the class obtained from inclusion logic to the complexity class
<jats:inline-formula content-type="math/tex">
<jats:tex-math notation="LaTeX" version="MathJax">\({\text{TotP}} \subseteq{\text{#P}}\)</jats:tex-math>
</jats:inline-formula>
.
</jats:p>
Publishing Year
Journal Title
ACM Transactions on Computational Logic
Article Number
3771721
LibreCat-ID
Cite this
Haak A, Kontinen J, Müller F, Vollmer H, Yang F. Counting of Teams in First-Order Team Logics. ACM Transactions on Computational Logic. Published online 2025. doi:10.1145/3771721
Haak, A., Kontinen, J., Müller, F., Vollmer, H., & Yang, F. (2025). Counting of Teams in First-Order Team Logics. ACM Transactions on Computational Logic, Article 3771721. https://doi.org/10.1145/3771721
@article{Haak_Kontinen_Müller_Vollmer_Yang_2025, title={Counting of Teams in First-Order Team Logics}, DOI={10.1145/3771721}, number={3771721}, journal={ACM Transactions on Computational Logic}, publisher={Association for Computing Machinery (ACM)}, author={Haak, Anselm and Kontinen, Juha and Müller, Fabian and Vollmer, Heribert and Yang, Fan}, year={2025} }
Haak, Anselm, Juha Kontinen, Fabian Müller, Heribert Vollmer, and Fan Yang. “Counting of Teams in First-Order Team Logics.” ACM Transactions on Computational Logic, 2025. https://doi.org/10.1145/3771721.
A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang, “Counting of Teams in First-Order Team Logics,” ACM Transactions on Computational Logic, Art. no. 3771721, 2025, doi: 10.1145/3771721.
Haak, Anselm, et al. “Counting of Teams in First-Order Team Logics.” ACM Transactions on Computational Logic, 3771721, Association for Computing Machinery (ACM), 2025, doi:10.1145/3771721.