Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing

M. Fuest, M. Winkler, Journal of Mathematical Fluid Mechanics 26 (2024).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Abstract
<jats:title>Abstract</jats:title><jats:p>The chemotaxis-Navier–Stokes system <jats:disp-formula><jats:alternatives><jats:tex-math>$$\begin{aligned} \left\{ \begin{array}{rcl} n_t+u\cdot \nabla n &amp; =&amp; \Delta \big (n c^{-\alpha } \big ), \\ c_t+ u\cdot \nabla c &amp; =&amp; \Delta c -nc,\\ u_t + (u\cdot \nabla ) u &amp; =&amp; \Delta u+\nabla P + n\nabla \Phi , \qquad \nabla \cdot u=0, \end{array} \right. \end{aligned}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>n</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>·</mml:mo> <mml:mi>∇</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mo>=</mml:mo> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mi>c</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow/> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>u</mml:mi> <mml:mo>·</mml:mo> <mml:mi>∇</mml:mi> <mml:mi>c</mml:mi> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mo>=</mml:mo> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>-</mml:mo> <mml:mi>n</mml:mi> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow/> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>·</mml:mo> <mml:mi>∇</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mo>=</mml:mo> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>∇</mml:mi> <mml:mi>P</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> <mml:mi>∇</mml:mi> <mml:mi>Φ</mml:mi> <mml:mo>,</mml:mo> <mml:mspace/> <mml:mi>∇</mml:mi> <mml:mo>·</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math></jats:alternatives></jats:disp-formula>modelling the behavior of aerobic bacteria in a fluid drop, is considered in a smoothly bounded domain <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Omega \subset \mathbb R^2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>. For all <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha &gt; 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> and all sufficiently regular <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Phi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Φ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>, we construct global classical solutions and thereby extend recent results for the fluid-free analogue to the system coupled to a Navier–Stokes system. As a crucial new challenge, our analysis requires a priori estimates for <jats:italic>u</jats:italic> at a point in the proof when knowledge about <jats:italic>n</jats:italic> is essentially limited to the observation that the mass is conserved. To overcome this problem, we also prove new uniform-in-time <jats:inline-formula><jats:alternatives><jats:tex-math>$$L^p$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> estimates for solutions to the inhomogeneous Navier–Stokes equations merely depending on the space-time <jats:inline-formula><jats:alternatives><jats:tex-math>$$L^2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> norm of the force term raised to an arbitrary small power.</jats:p>
Publishing Year
Journal Title
Journal of Mathematical Fluid Mechanics
Volume
26
Issue
4
Article Number
60
LibreCat-ID

Cite this

Fuest M, Winkler M. Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing. Journal of Mathematical Fluid Mechanics. 2024;26(4). doi:10.1007/s00021-024-00899-8
Fuest, M., & Winkler, M. (2024). Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing. Journal of Mathematical Fluid Mechanics, 26(4), Article 60. https://doi.org/10.1007/s00021-024-00899-8
@article{Fuest_Winkler_2024, title={Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing}, volume={26}, DOI={10.1007/s00021-024-00899-8}, number={460}, journal={Journal of Mathematical Fluid Mechanics}, publisher={Springer Science and Business Media LLC}, author={Fuest, Mario and Winkler, Michael}, year={2024} }
Fuest, Mario, and Michael Winkler. “Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing.” Journal of Mathematical Fluid Mechanics 26, no. 4 (2024). https://doi.org/10.1007/s00021-024-00899-8.
M. Fuest and M. Winkler, “Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing,” Journal of Mathematical Fluid Mechanics, vol. 26, no. 4, Art. no. 60, 2024, doi: 10.1007/s00021-024-00899-8.
Fuest, Mario, and Michael Winkler. “Uniform $$L^p$$ Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing.” Journal of Mathematical Fluid Mechanics, vol. 26, no. 4, 60, Springer Science and Business Media LLC, 2024, doi:10.1007/s00021-024-00899-8.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar