A degenerate migration-consumption model in domains of arbitrary dimension
M. Winkler, Advanced Nonlinear Studies 24 (2024) 592–615.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Abstract
<jats:title>Abstract</jats:title>
<jats:p>In a smoothly bounded convex domain <jats:inline-formula id="j_ans-2023-0131_ineq_001">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<m:mi mathvariant="normal">Ω</m:mi>
<m:mo>⊂</m:mo>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:math>
<jats:tex-math>
${\Omega}\subset {\mathbb{R}}^{n}$
</jats:tex-math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0131_ineq_001.png"/>
</jats:alternatives>
</jats:inline-formula> with <jats:italic>n</jats:italic> ≥ 1, a no-flux initial-boundary value problem for<jats:disp-formula id="j_ans-2023-0131_eq_999">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll">
<m:mfenced close="" open="{">
<m:mrow>
<m:mtable class="cases">
<m:mtr>
<m:mtd columnalign="left">
<m:msub>
<m:mrow>
<m:mi>u</m:mi>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
</m:mrow>
</m:msub>
<m:mo>=</m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mfenced close=")" open="(">
<m:mrow>
<m:mi>u</m:mi>
<m:mi>ϕ</m:mi>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mi>v</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
</m:mrow>
</m:mfenced>
<m:mo>,</m:mo>
<m:mspace width="1em"/>
</m:mtd>
</m:mtr>
<m:mtr>
<m:mtd columnalign="left">
<m:msub>
<m:mrow>
<m:mi>v</m:mi>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
</m:mrow>
</m:msub>
<m:mo>=</m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mi>v</m:mi>
<m:mo>−</m:mo>
<m:mi>u</m:mi>
<m:mi>v</m:mi>
<m:mo>,</m:mo>
<m:mspace width="1em"/>
</m:mtd>
</m:mtr>
</m:mtable>
</m:mrow>
</m:mfenced>
</m:math>
<jats:tex-math>
$$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$
</jats:tex-math>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0131_eq_999.png"/>
</jats:alternatives>
</jats:disp-formula>is considered under the assumption that near the origin, the function <jats:italic>ϕ</jats:italic> suitably generalizes the prototype given by<jats:disp-formula id="j_ans-2023-0131_eq_998">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll">
<m:mi>ϕ</m:mi>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mi>ξ</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
<m:mo>=</m:mo>
<m:msup>
<m:mrow>
<m:mi>ξ</m:mi>
</m:mrow>
<m:mrow>
<m:mi>α</m:mi>
</m:mrow>
</m:msup>
<m:mo>,</m:mo>
<m:mspace width="2em"/>
<m:mi>ξ</m:mi>
<m:mo>∈</m:mo>
<m:mrow>
<m:mo stretchy="false">[</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>ξ</m:mi>
</m:mrow>
<m:mrow>
<m:mn>0</m:mn>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo stretchy="false">]</m:mo>
</m:mrow>
<m:mo>.</m:mo>
</m:math>
<jats:tex-math>
$$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$
</jats:tex-math>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0131_eq_998.png"/>
</jats:alternatives>
</jats:disp-formula>By means of separate approaches, it is shown that in both cases <jats:italic>α</jats:italic> ∈ (0, 1) and <jats:italic>α</jats:italic> ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy<jats:disp-formula id="j_ans-2023-0131_eq_997">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll">
<m:mi>C</m:mi>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
<m:mo>≔</m:mo>
<m:munder>
<m:mrow>
<m:mtext>ess sup</m:mtext>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
<m:mo>∈</m:mo>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:mi>T</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
</m:mrow>
</m:munder>
<m:msub>
<m:mrow>
<m:mo>∫</m:mo>
</m:mrow>
<m:mrow>
<m:mi mathvariant="normal">Ω</m:mi>
</m:mrow>
</m:msub>
<m:mi>u</m:mi>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mo>⋅</m:mo>
<m:mo>,</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
<m:mi>ln</m:mi>
<m:mo></m:mo>
<m:mi>u</m:mi>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mo>⋅</m:mo>
<m:mo>,</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
<m:mo><</m:mo>
<m:mi>∞</m:mi>
<m:mspace width="2em"/>
<m:mtext>for all </m:mtext>
<m:mi>T</m:mi>
<m:mo>></m:mo>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
</m:math>
<jats:tex-math>
$$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$
</jats:tex-math>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2023-0131_eq_997.png"/>
</jats:alternatives>
</jats:disp-formula>with sup<jats:sub>
<jats:italic>T</jats:italic>>0</jats:sub>
<jats:italic>C</jats:italic>(<jats:italic>T</jats:italic>) < ∞ if <jats:italic>α</jats:italic> ∈ [1, 2].</jats:p>
Publishing Year
Journal Title
Advanced Nonlinear Studies
Volume
24
Issue
3
Page
592-615
ISSN
LibreCat-ID
Cite this
Winkler M. A degenerate migration-consumption model in domains of arbitrary dimension. Advanced Nonlinear Studies. 2024;24(3):592-615. doi:10.1515/ans-2023-0131
Winkler, M. (2024). A degenerate migration-consumption model in domains of arbitrary dimension. Advanced Nonlinear Studies, 24(3), 592–615. https://doi.org/10.1515/ans-2023-0131
@article{Winkler_2024, title={A degenerate migration-consumption model in domains of arbitrary dimension}, volume={24}, DOI={10.1515/ans-2023-0131}, number={3}, journal={Advanced Nonlinear Studies}, publisher={Walter de Gruyter GmbH}, author={Winkler, Michael}, year={2024}, pages={592–615} }
Winkler, Michael. “A Degenerate Migration-Consumption Model in Domains of Arbitrary Dimension.” Advanced Nonlinear Studies 24, no. 3 (2024): 592–615. https://doi.org/10.1515/ans-2023-0131.
M. Winkler, “A degenerate migration-consumption model in domains of arbitrary dimension,” Advanced Nonlinear Studies, vol. 24, no. 3, pp. 592–615, 2024, doi: 10.1515/ans-2023-0131.
Winkler, Michael. “A Degenerate Migration-Consumption Model in Domains of Arbitrary Dimension.” Advanced Nonlinear Studies, vol. 24, no. 3, Walter de Gruyter GmbH, 2024, pp. 592–615, doi:10.1515/ans-2023-0131.