Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $

K. Kang, J. Lee, M. Winkler, Discrete and Continuous Dynamical Systems 42 (2022).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Kang, Kyungkeun; Lee, Jihoon; Winkler, MichaelLibreCat
Abstract
<jats:p xml:lang="fr">&lt;p style='text-indent:20px;'&gt;The Cauchy problem in &lt;inline-formula&gt;&lt;tex-math id="M2"&gt;\begin{document}$ \mathbb{R}^3 $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; for the chemotaxis-Navier–Stokes system&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE1"&gt; \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{l} n_t + u\cdot\nabla n = \Delta n - \nabla \cdot (n\nabla c), \\ c_t + u\cdot\nabla c = \Delta c - nc, \\ u_t + (u\cdot\nabla) u = \Delta u + \nabla P + n\nabla\phi, \qquad \nabla \cdot u = 0, \ \end{array} \right. \end{eqnarray*} $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;is considered. Under suitable conditions on the initial data &lt;inline-formula&gt;&lt;tex-math id="M3"&gt;\begin{document}$ (n_0, c_0, u_0) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, with regard to the crucial first component requiring that &lt;inline-formula&gt;&lt;tex-math id="M4"&gt;\begin{document}$ n_0\in L^1( \mathbb{R}^3) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; be nonnegative and such that &lt;inline-formula&gt;&lt;tex-math id="M5"&gt;\begin{document}$ (n_0+1)\ln (n_0+1) \in L^1( \mathbb{R}^3) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, a globally defined weak solution with &lt;inline-formula&gt;&lt;tex-math id="M6"&gt;\begin{document}$ (n, c, u)|_{t = 0} = (n_0, c_0, u_0) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; is constructed. Apart from that, assuming that moreover &lt;inline-formula&gt;&lt;tex-math id="M7"&gt;\begin{document}$ \int_{ \mathbb{R}^3} n_0(x) \ln (1+|x|^2) dx $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; is finite, it is shown that a weak solution exists which enjoys further regularity features and preserves mass in an appropriate sense.&lt;/p&gt;</jats:p>
Publishing Year
Journal Title
Discrete and Continuous Dynamical Systems
Volume
42
Issue
11
Article Number
5201
LibreCat-ID

Cite this

Kang K, Lee J, Winkler M. Global weak solutions to a chemotaxis-Navier-Stokes system in $  \mathbb{R}^3 $. Discrete and Continuous Dynamical Systems. 2022;42(11). doi:10.3934/dcds.2022091
Kang, K., Lee, J., & Winkler, M. (2022). Global weak solutions to a chemotaxis-Navier-Stokes system in $  \mathbb{R}^3 $. Discrete and Continuous Dynamical Systems, 42(11), Article 5201. https://doi.org/10.3934/dcds.2022091
@article{Kang_Lee_Winkler_2022, title={Global weak solutions to a chemotaxis-Navier-Stokes system in $  \mathbb{R}^3 $}, volume={42}, DOI={10.3934/dcds.2022091}, number={115201}, journal={Discrete and Continuous Dynamical Systems}, publisher={American Institute of Mathematical Sciences (AIMS)}, author={Kang, Kyungkeun and Lee, Jihoon and Winkler, Michael}, year={2022} }
Kang, Kyungkeun, Jihoon Lee, and Michael Winkler. “Global Weak Solutions to a Chemotaxis-Navier-Stokes System in $  \mathbb{R}^3 $.” Discrete and Continuous Dynamical Systems 42, no. 11 (2022). https://doi.org/10.3934/dcds.2022091.
K. Kang, J. Lee, and M. Winkler, “Global weak solutions to a chemotaxis-Navier-Stokes system in $  \mathbb{R}^3 $,” Discrete and Continuous Dynamical Systems, vol. 42, no. 11, Art. no. 5201, 2022, doi: 10.3934/dcds.2022091.
Kang, Kyungkeun, et al. “Global Weak Solutions to a Chemotaxis-Navier-Stokes System in $  \mathbb{R}^3 $.” Discrete and Continuous Dynamical Systems, vol. 42, no. 11, 5201, American Institute of Mathematical Sciences (AIMS), 2022, doi:10.3934/dcds.2022091.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar