Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $
K. Kang, J. Lee, M. Winkler, Discrete and Continuous Dynamical Systems 42 (2022).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Kang, Kyungkeun;
Lee, Jihoon;
Winkler, MichaelLibreCat
Abstract
<jats:p xml:lang="fr"><p style='text-indent:20px;'>The Cauchy problem in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula> for the chemotaxis-Navier–Stokes system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{l} n_t + u\cdot\nabla n = \Delta n - \nabla \cdot (n\nabla c), \\ c_t + u\cdot\nabla c = \Delta c - nc, \\ u_t + (u\cdot\nabla) u = \Delta u + \nabla P + n\nabla\phi, \qquad \nabla \cdot u = 0, \ \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is considered. Under suitable conditions on the initial data <inline-formula><tex-math id="M3">\begin{document}$ (n_0, c_0, u_0) $\end{document}</tex-math></inline-formula>, with regard to the crucial first component requiring that <inline-formula><tex-math id="M4">\begin{document}$ n_0\in L^1( \mathbb{R}^3) $\end{document}</tex-math></inline-formula> be nonnegative and such that <inline-formula><tex-math id="M5">\begin{document}$ (n_0+1)\ln (n_0+1) \in L^1( \mathbb{R}^3) $\end{document}</tex-math></inline-formula>, a globally defined weak solution with <inline-formula><tex-math id="M6">\begin{document}$ (n, c, u)|_{t = 0} = (n_0, c_0, u_0) $\end{document}</tex-math></inline-formula> is constructed. Apart from that, assuming that moreover <inline-formula><tex-math id="M7">\begin{document}$ \int_{ \mathbb{R}^3} n_0(x) \ln (1+|x|^2) dx $\end{document}</tex-math></inline-formula> is finite, it is shown that a weak solution exists which enjoys further regularity features and preserves mass in an appropriate sense.</p></jats:p>
Publishing Year
Journal Title
Discrete and Continuous Dynamical Systems
Volume
42
Issue
11
Article Number
5201
LibreCat-ID
Cite this
Kang K, Lee J, Winkler M. Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $. Discrete and Continuous Dynamical Systems. 2022;42(11). doi:10.3934/dcds.2022091
Kang, K., Lee, J., & Winkler, M. (2022). Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $. Discrete and Continuous Dynamical Systems, 42(11), Article 5201. https://doi.org/10.3934/dcds.2022091
@article{Kang_Lee_Winkler_2022, title={Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $}, volume={42}, DOI={10.3934/dcds.2022091}, number={115201}, journal={Discrete and Continuous Dynamical Systems}, publisher={American Institute of Mathematical Sciences (AIMS)}, author={Kang, Kyungkeun and Lee, Jihoon and Winkler, Michael}, year={2022} }
Kang, Kyungkeun, Jihoon Lee, and Michael Winkler. “Global Weak Solutions to a Chemotaxis-Navier-Stokes System in $ \mathbb{R}^3 $.” Discrete and Continuous Dynamical Systems 42, no. 11 (2022). https://doi.org/10.3934/dcds.2022091.
K. Kang, J. Lee, and M. Winkler, “Global weak solutions to a chemotaxis-Navier-Stokes system in $ \mathbb{R}^3 $,” Discrete and Continuous Dynamical Systems, vol. 42, no. 11, Art. no. 5201, 2022, doi: 10.3934/dcds.2022091.
Kang, Kyungkeun, et al. “Global Weak Solutions to a Chemotaxis-Navier-Stokes System in $ \mathbb{R}^3 $.” Discrete and Continuous Dynamical Systems, vol. 42, no. 11, 5201, American Institute of Mathematical Sciences (AIMS), 2022, doi:10.3934/dcds.2022091.