Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions
M. Winkler, Advanced Nonlinear Studies 20 (2020) 795–817.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Abstract
<jats:title>Abstract</jats:title>
<jats:p>The chemotaxis-growth system</jats:p>
<jats:p>
<jats:disp-formula id="j_ans-2020-2107_eq_0001">
<jats:label>($\star$)</jats:label>
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo>{</m:mo>
<m:mtable columnspacing="0pt" displaystyle="true" rowspacing="0pt">
<m:mtr>
<m:mtd columnalign="right">
<m:msub>
<m:mi>u</m:mi>
<m:mi>t</m:mi>
</m:msub>
</m:mtd>
<m:mtd columnalign="left">
<m:mrow>
<m:mrow>
<m:mi />
<m:mo>=</m:mo>
<m:mrow>
<m:mrow>
<m:mrow>
<m:mrow>
<m:mi>D</m:mi>
<m:mo></m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mo></m:mo>
<m:mi>u</m:mi>
</m:mrow>
<m:mo>-</m:mo>
<m:mrow>
<m:mrow>
<m:mi>χ</m:mi>
<m:mo></m:mo>
<m:mo>∇</m:mo>
</m:mrow>
<m:mo>⋅</m:mo>
<m:mrow>
<m:mo stretchy="false">(</m:mo>
<m:mrow>
<m:mi>u</m:mi>
<m:mo></m:mo>
<m:mrow>
<m:mo>∇</m:mo>
<m:mo></m:mo>
<m:mi>v</m:mi>
</m:mrow>
</m:mrow>
<m:mo stretchy="false">)</m:mo>
</m:mrow>
</m:mrow>
</m:mrow>
<m:mo>+</m:mo>
<m:mrow>
<m:mi>ρ</m:mi>
<m:mo></m:mo>
<m:mi>u</m:mi>
</m:mrow>
</m:mrow>
<m:mo>-</m:mo>
<m:mrow>
<m:mi>μ</m:mi>
<m:mo></m:mo>
<m:msup>
<m:mi>u</m:mi>
<m:mi>α</m:mi>
</m:msup>
</m:mrow>
</m:mrow>
</m:mrow>
<m:mo>,</m:mo>
</m:mrow>
</m:mtd>
</m:mtr>
<m:mtr>
<m:mtd columnalign="right">
<m:msub>
<m:mi>v</m:mi>
<m:mi>t</m:mi>
</m:msub>
</m:mtd>
<m:mtd columnalign="left">
<m:mrow>
<m:mi />
<m:mo>=</m:mo>
<m:mrow>
<m:mrow>
<m:mrow>
<m:mi>d</m:mi>
<m:mo></m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mo></m:mo>
<m:mi>v</m:mi>
</m:mrow>
<m:mo>-</m:mo>
<m:mrow>
<m:mi>κ</m:mi>
<m:mo></m:mo>
<m:mi>v</m:mi>
</m:mrow>
</m:mrow>
<m:mo>+</m:mo>
<m:mrow>
<m:mi>λ</m:mi>
<m:mo></m:mo>
<m:mi>u</m:mi>
</m:mrow>
</m:mrow>
</m:mrow>
</m:mtd>
</m:mtr>
</m:mtable>
</m:mrow>
</m:math>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_fig_001.png" />
<jats:tex-math>{}\left\{\begin{aligned} \displaystyle{}u_{t}&\displaystyle=D\Delta u-\chi% \nabla\cdot(u\nabla v)+\rho u-\mu u^{\alpha},\\ \displaystyle v_{t}&\displaystyle=d\Delta v-\kappa v+\lambda u\end{aligned}\right.</jats:tex-math>
</jats:alternatives>
</jats:disp-formula>
</jats:p>
<jats:p>is considered under homogeneous Neumann boundary conditions in smoothly bounded domains <jats:inline-formula id="j_ans-2020-2107_ineq_9999">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mi mathvariant="normal">Ω</m:mi>
<m:mo>⊂</m:mo>
<m:msup>
<m:mi>ℝ</m:mi>
<m:mi>n</m:mi>
</m:msup>
</m:mrow>
</m:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_inl_001.png" />
<jats:tex-math>{\Omega\subset\mathbb{R}^{n}}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, <jats:inline-formula id="j_ans-2020-2107_ineq_9998">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mi>n</m:mi>
<m:mo>≥</m:mo>
<m:mn>1</m:mn>
</m:mrow>
</m:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_inl_002.png" />
<jats:tex-math>{n\geq 1}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. For any choice of <jats:inline-formula id="j_ans-2020-2107_ineq_9997">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mi>α</m:mi>
<m:mo>></m:mo>
<m:mn>1</m:mn>
</m:mrow>
</m:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_inl_003.png" />
<jats:tex-math>{\alpha>1}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, the literature provides a comprehensive result on global existence for widely arbitrary initial data within a suitably generalized solution concept, but the regularity properties of such solutions may be rather poor, as indicated by precedent results on the occurrence of finite-time blow-up in corresponding parabolic-elliptic simplifications. Based on the analysis of a certain eventual Lyapunov-type feature of ($\star$), the present work shows that, whenever <jats:inline-formula id="j_ans-2020-2107_ineq_9996">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mi>α</m:mi>
<m:mo>≥</m:mo>
<m:mrow>
<m:mn>2</m:mn>
<m:mo>-</m:mo>
<m:mfrac>
<m:mn>2</m:mn>
<m:mi>n</m:mi>
</m:mfrac>
</m:mrow>
</m:mrow>
</m:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_inl_004.png" />
<jats:tex-math>{\alpha\geq 2-\frac{2}{n}}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, under an appropriate smallness assumption on χ, any such solution at least asymptotically exhibits relaxation by approaching the nontrivial spatially homogeneous steady state <jats:inline-formula id="j_ans-2020-2107_ineq_9995">
<jats:alternatives>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo maxsize="120%" minsize="120%">(</m:mo>
<m:msup>
<m:mrow>
<m:mo maxsize="120%" minsize="120%">(</m:mo>
<m:mfrac>
<m:mi>ρ</m:mi>
<m:mi>μ</m:mi>
</m:mfrac>
<m:mo maxsize="120%" minsize="120%">)</m:mo>
</m:mrow>
<m:mfrac>
<m:mn>1</m:mn>
<m:mrow>
<m:mi>α</m:mi>
<m:mo>-</m:mo>
<m:mn>1</m:mn>
</m:mrow>
</m:mfrac>
</m:msup>
<m:mo>,</m:mo>
<m:mrow>
<m:mfrac>
<m:mi>λ</m:mi>
<m:mi>κ</m:mi>
</m:mfrac>
<m:mo></m:mo>
<m:msup>
<m:mrow>
<m:mo maxsize="120%" minsize="120%">(</m:mo>
<m:mfrac>
<m:mi>ρ</m:mi>
<m:mi>μ</m:mi>
</m:mfrac>
<m:mo maxsize="120%" minsize="120%">)</m:mo>
</m:mrow>
<m:mfrac>
<m:mn>1</m:mn>
<m:mrow>
<m:mi>α</m:mi>
<m:mo>-</m:mo>
<m:mn>1</m:mn>
</m:mrow>
</m:mfrac>
</m:msup>
</m:mrow>
<m:mo maxsize="120%" minsize="120%">)</m:mo>
</m:mrow>
</m:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ans-2020-2107_inl_005.png" />
<jats:tex-math>{\bigl{(}\bigl{(}\frac{\rho}{\mu}\bigr{)}^{\frac{1}{\alpha-1}},\frac{\lambda}{% \kappa}\bigl{(}\frac{\rho}{\mu}\bigr{)}^{\frac{1}{\alpha-1}}\bigr{)}}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> in the large time limit.</jats:p>
Publishing Year
Journal Title
Advanced Nonlinear Studies
Volume
20
Issue
4
Page
795-817
LibreCat-ID
Cite this
Winkler M. Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions. Advanced Nonlinear Studies. 2020;20(4):795-817. doi:10.1515/ans-2020-2107
Winkler, M. (2020). Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions. Advanced Nonlinear Studies, 20(4), 795–817. https://doi.org/10.1515/ans-2020-2107
@article{Winkler_2020, title={Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions}, volume={20}, DOI={10.1515/ans-2020-2107}, number={4}, journal={Advanced Nonlinear Studies}, publisher={Walter de Gruyter GmbH}, author={Winkler, Michael}, year={2020}, pages={795–817} }
Winkler, Michael. “Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions.” Advanced Nonlinear Studies 20, no. 4 (2020): 795–817. https://doi.org/10.1515/ans-2020-2107.
M. Winkler, “Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions,” Advanced Nonlinear Studies, vol. 20, no. 4, pp. 795–817, 2020, doi: 10.1515/ans-2020-2107.
Winkler, Michael. “Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions.” Advanced Nonlinear Studies, vol. 20, no. 4, Walter de Gruyter GmbH, 2020, pp. 795–817, doi:10.1515/ans-2020-2107.