Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains
X. Cao, M. Winkler, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148 (2018) 939–955.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Cao, Xinru;
Winkler, MichaelLibreCat
Abstract
<jats:p>The paper studies large time behaviour of solutions to the Keller–Segel system with quadratic degradation in a liquid environment, as given by</jats:p><jats:p><jats:disp-formula><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" orientation="portrait" mime-subtype="gif" mimetype="image" position="float" xlink:type="simple" xlink:href="S0308210518000057_equ01" /></jats:disp-formula></jats:p><jats:p>under Neumann boundary conditions in a bounded domain <jats:italic>Ω ⊂</jats:italic> ℝ<jats:sup><jats:italic>n</jats:italic></jats:sup>, where <jats:italic>n</jats:italic> ≥ 1 is arbitrary. It is shown that whenever <jats:italic>U</jats:italic> : <jats:italic>Ω ×</jats:italic> (0,<jats:italic>∞</jats:italic>) <jats:italic>→</jats:italic> ℝ<jats:sup><jats:italic>n</jats:italic></jats:sup> is a bounded and sufficiently regular solenoidal vector field any non-trivial global bounded solution of (<jats:italic>⋆</jats:italic>) approaches the trivial equilibrium at a rate that, with respect to the norm in either of the spaces <jats:italic>L</jats:italic><jats:sup>1</jats:sup>(<jats:italic>Ω</jats:italic>) and <jats:italic>L<jats:sup>∞</jats:sup></jats:italic>(<jats:italic>Ω</jats:italic>), can be controlled from above and below by appropriate multiples of 1<jats:italic>/</jats:italic>(<jats:italic>t</jats:italic> + 1). This underlines that, even up to this quantitative level of accuracy, the large time behaviour in (<jats:italic>⋆</jats:italic>) is essentially independent not only of the particular fluid flow, but also of any effect originating from chemotactic cross-diffusion. The latter is in contrast to the corresponding Cauchy problem, for which known results show that in the <jats:italic>n</jats:italic> = 2 case the presence of chemotaxis can significantly enhance biomixing by reducing the respective spatial <jats:italic>L</jats:italic><jats:sup>1</jats:sup> norms of solutions.</jats:p>
Publishing Year
Journal Title
Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Volume
148
Issue
5
Page
939-955
LibreCat-ID
Cite this
Cao X, Winkler M. Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2018;148(5):939-955. doi:10.1017/s0308210518000057
Cao, X., & Winkler, M. (2018). Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(5), 939–955. https://doi.org/10.1017/s0308210518000057
@article{Cao_Winkler_2018, title={Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains}, volume={148}, DOI={10.1017/s0308210518000057}, number={5}, journal={Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, publisher={Cambridge University Press (CUP)}, author={Cao, Xinru and Winkler, Michael}, year={2018}, pages={939–955} }
Cao, Xinru, and Michael Winkler. “Sharp Decay Estimates in a Bioconvection Model with Quadratic Degradation in Bounded Domains.” Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148, no. 5 (2018): 939–55. https://doi.org/10.1017/s0308210518000057.
X. Cao and M. Winkler, “Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 148, no. 5, pp. 939–955, 2018, doi: 10.1017/s0308210518000057.
Cao, Xinru, and Michael Winkler. “Sharp Decay Estimates in a Bioconvection Model with Quadratic Degradation in Bounded Domains.” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 148, no. 5, Cambridge University Press (CUP), 2018, pp. 939–55, doi:10.1017/s0308210518000057.