Surjectivity of Convolution Operators on Harmonic NA Groups

E. Papageorgiou, The Journal of Geometric Analysis 35 (2024).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Papageorgiou, Effie
Abstract
<jats:title>Abstract</jats:title> <jats:p>Let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\mu $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>μ</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> be a radial compactly supported distribution on a harmonic <jats:italic>NA</jats:italic> group. We prove that the right convolution operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$c_{\mu }:f \mapsto f* \mu $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mi>f</mml:mi> <mml:mo>↦</mml:mo> <mml:mi>f</mml:mi> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mi>μ</mml:mi> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> maps the space of smooth <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\mathfrak {v}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>v</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula>-radial functions onto itself if and only if the spherical Fourier transform <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\widetilde{\mu }(\lambda )$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mover> <mml:mi>μ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\lambda \in \mathbb {C}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula>, is slowly decreasing. As an application, we prove that certain averages over spheres are surjective on the space of smooth <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\mathfrak {v}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>v</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula>-radial functions.</jats:p>
Publishing Year
Journal Title
The Journal of Geometric Analysis
Volume
35
Issue
1
Article Number
7
LibreCat-ID

Cite this

Papageorgiou E. Surjectivity of Convolution Operators on Harmonic NA Groups. The Journal of Geometric Analysis. 2024;35(1). doi:10.1007/s12220-024-01837-w
Papageorgiou, E. (2024). Surjectivity of Convolution Operators on Harmonic NA Groups. The Journal of Geometric Analysis, 35(1), Article 7. https://doi.org/10.1007/s12220-024-01837-w
@article{Papageorgiou_2024, title={Surjectivity of Convolution Operators on Harmonic NA Groups}, volume={35}, DOI={10.1007/s12220-024-01837-w}, number={17}, journal={The Journal of Geometric Analysis}, publisher={Springer Science and Business Media LLC}, author={Papageorgiou, Effie}, year={2024} }
Papageorgiou, Effie. “Surjectivity of Convolution Operators on Harmonic NA Groups.” The Journal of Geometric Analysis 35, no. 1 (2024). https://doi.org/10.1007/s12220-024-01837-w.
E. Papageorgiou, “Surjectivity of Convolution Operators on Harmonic NA Groups,” The Journal of Geometric Analysis, vol. 35, no. 1, Art. no. 7, 2024, doi: 10.1007/s12220-024-01837-w.
Papageorgiou, Effie. “Surjectivity of Convolution Operators on Harmonic NA Groups.” The Journal of Geometric Analysis, vol. 35, no. 1, 7, Springer Science and Business Media LLC, 2024, doi:10.1007/s12220-024-01837-w.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar