L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-symmetric Solutions
E. Papageorgiou, International Mathematics Research Notices 2025 (2025).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Papageorgiou, Effie
Abstract
<jats:title>Abstract</jats:title>
<jats:p>The main goal of this work is to study the $L^{p}$-asymptotic behavior of solutions to the heat equation on arbitrary rank Riemannian symmetric spaces of non-compact-type $G/K$ for non-bi-$K$ invariant initial data. For initial data $u_{0}$ compactly supported or in a weighted $L^{1}(G/K)$ space with a weight depending on $p\in [1, \infty ]$, we introduce a mass function $M_{p}(u_{0})(\cdot )$, and prove that if $h_{t}$ is the heat kernel on $G/K$, then $$ \begin{align*} &\|h_t\|_p^{-1}\,\|u_0\ast h_t \, - \,M_p(u_0)(\cdot)\,h_t\|_p \rightarrow 0 \quad \textrm{as} \quad t\rightarrow \infty.\end{align*} $$ Interestingly, the $L^{p}$ heat concentration leads to completely different expressions of the mass function for $1\leq p &lt;2$ and $2\leq p\leq \infty $. If we further assume that the initial data are bi-$K$-invariant, then our mass function boils down to the constant $\int _{G/K}u_{0}$ in the case $p=1$, and more generally to $\mathcal{H}{u_{0}}(i\rho (2/p-1))$ if $1\leq p&lt;2$, and to $\mathcal{H}{u_{0}}(0)$ if $2\leq p \leq \infty $. Thus, we improve upon results by Vázquez, Anker et al., and Naik et al., clarifying the nature of the problem.</jats:p>
Publishing Year
Journal Title
International Mathematics Research Notices
Volume
2025
Issue
7
Article Number
rnaf074
LibreCat-ID
Cite this
Papageorgiou E. L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-symmetric Solutions. International Mathematics Research Notices. 2025;2025(7). doi:10.1093/imrn/rnaf074
Papageorgiou, E. (2025). L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-symmetric Solutions. International Mathematics Research Notices, 2025(7), Article rnaf074. https://doi.org/10.1093/imrn/rnaf074
@article{Papageorgiou_2025, title={L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-symmetric Solutions}, volume={2025}, DOI={10.1093/imrn/rnaf074}, number={7rnaf074}, journal={International Mathematics Research Notices}, publisher={Oxford University Press (OUP)}, author={Papageorgiou, Effie}, year={2025} }
Papageorgiou, Effie. “L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-Symmetric Solutions.” International Mathematics Research Notices 2025, no. 7 (2025). https://doi.org/10.1093/imrn/rnaf074.
E. Papageorgiou, “L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-symmetric Solutions,” International Mathematics Research Notices, vol. 2025, no. 7, Art. no. rnaf074, 2025, doi: 10.1093/imrn/rnaf074.
Papageorgiou, Effie. “L p Asymptotics for the Heat Equation on Symmetric Spaces for Non-Symmetric Solutions.” International Mathematics Research Notices, vol. 2025, no. 7, rnaf074, Oxford University Press (OUP), 2025, doi:10.1093/imrn/rnaf074.