On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks

B. Hinrichs, P. Mittenbühler, ArXiv:2511.13409 (2025).

Download
No fulltext has been uploaded.
Preprint | English
Author
Hinrichs, BenjaminLibreCat ; Mittenbühler, Pascal
Abstract
We study the convergence rate of translation-invariant discrete-time quantum dynamics on a one-dimensional lattice. We prove that the cumulative distributions function of the ballistically scaled position $\mathbb X(n)/{n}$ after $n$ steps converges at a rate of $n^{-1/3}$ in the Lévy metric as $n\to\infty$. In the special case of step-coin quantum walks with two-dimensional coin space, we recover the same convergence rate for the supremum distance and prove optimality.
Publishing Year
Journal Title
arXiv:2511.13409
LibreCat-ID

Cite this

Hinrichs B, Mittenbühler P. On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks. arXiv:251113409. Published online 2025.
Hinrichs, B., & Mittenbühler, P. (2025). On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks. In arXiv:2511.13409.
@article{Hinrichs_Mittenbühler_2025, title={On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks}, journal={arXiv:2511.13409}, author={Hinrichs, Benjamin and Mittenbühler, Pascal}, year={2025} }
Hinrichs, Benjamin, and Pascal Mittenbühler. “On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks.” ArXiv:2511.13409, 2025.
B. Hinrichs and P. Mittenbühler, “On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks,” arXiv:2511.13409. 2025.
Hinrichs, Benjamin, and Pascal Mittenbühler. “On the Optimal Rate of Convergence for Translation-Invariant 1D Quantum Walks.” ArXiv:2511.13409, 2025.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2511.13409

Search this title in

Google Scholar