χ-colorable graph states: closed-form expressions and quantum orthogonal arrays
K.-R. Revis, H. Zakaryan, Z. Raissi, Journal of Physics A: Mathematical and Theoretical 58 (2025).
Download
Revis_2025_J._Phys._A%3A_Math._Theor._58_355301.pdf
749.44 KB
Journal Article
| Published
| English
Author
Revis, Konstantinos-Rafail;
Zakaryan, Hrachya;
Raissi, Zahra
Abstract
<jats:title>Abstract</jats:title>
<jats:p>Graph states are a fundamental class of multipartite entangled quantum states with wide-ranging applications in quantum information and computation. In this work, we develop a systematic approach for constructing and analyzing <jats:italic>χ</jats:italic>-colorable graph states, deriving explicit closed-form expressions for arbitrary <jats:italic>χ</jats:italic>. For a broad family of two- and three-colorable graph states, the representations obtained using only local operations require a minimal number of terms in the <jats:italic>Z</jats:italic>-eigenbasis. We prove that every two-colorable graph state is local Clifford (LC) equivalent to a state expressible as a summation of rows of an orthogonal array (OA). For graph states with <jats:italic>χ</jats:italic> > 2, we show that they are LC-equivalent to quantum OAs, establishing a direct combinatorial connection between multipartite entanglement and structured quantum states. Furthermore, the upper and lower bounds of the Schmidt measure for graph states with arbitrary <jats:italic>χ</jats:italic> colorability are discussed, extending the results for an arbitrary local dimension. Our results offer an efficient and practical method for systematically constructing graph states, optimizing their representation in quantum circuits, and identifying structured forms of multipartite entanglement. This approach also connects graph states to <jats:italic>k</jats:italic>-uniform and absolutely maximally entangled states, motivating further exploration of the structure of entangled states and their applications in quantum networks, quantum error correction, and measurement based quantum computing.</jats:p>
Publishing Year
Journal Title
Journal of Physics A: Mathematical and Theoretical
Volume
58
Issue
35
Article Number
355301
LibreCat-ID
Cite this
Revis K-R, Zakaryan H, Raissi Z. χ-colorable graph states: closed-form expressions and quantum orthogonal arrays. Journal of Physics A: Mathematical and Theoretical. 2025;58(35). doi:10.1088/1751-8121/adfe45
Revis, K.-R., Zakaryan, H., & Raissi, Z. (2025). χ-colorable graph states: closed-form expressions and quantum orthogonal arrays. Journal of Physics A: Mathematical and Theoretical, 58(35), Article 355301. https://doi.org/10.1088/1751-8121/adfe45
@article{Revis_Zakaryan_Raissi_2025, title={χ-colorable graph states: closed-form expressions and quantum orthogonal arrays}, volume={58}, DOI={10.1088/1751-8121/adfe45}, number={35355301}, journal={Journal of Physics A: Mathematical and Theoretical}, publisher={IOP Publishing}, author={Revis, Konstantinos-Rafail and Zakaryan, Hrachya and Raissi, Zahra}, year={2025} }
Revis, Konstantinos-Rafail, Hrachya Zakaryan, and Zahra Raissi. “χ-Colorable Graph States: Closed-Form Expressions and Quantum Orthogonal Arrays.” Journal of Physics A: Mathematical and Theoretical 58, no. 35 (2025). https://doi.org/10.1088/1751-8121/adfe45.
K.-R. Revis, H. Zakaryan, and Z. Raissi, “χ-colorable graph states: closed-form expressions and quantum orthogonal arrays,” Journal of Physics A: Mathematical and Theoretical, vol. 58, no. 35, Art. no. 355301, 2025, doi: 10.1088/1751-8121/adfe45.
Revis, Konstantinos-Rafail, et al. “χ-Colorable Graph States: Closed-Form Expressions and Quantum Orthogonal Arrays.” Journal of Physics A: Mathematical and Theoretical, vol. 58, no. 35, 355301, IOP Publishing, 2025, doi:10.1088/1751-8121/adfe45.
Main File(s)
File Name
Revis_2025_J._Phys._A%3A_Math._Theor._58_355301.pdf
749.44 KB
Access Level
Closed Access
Last Uploaded
2026-02-09T15:35:25Z