Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms

B. Janssens, M. Niestijl, Communications in Mathematical Physics 406 (2025).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Janssens, Bas; Niestijl, Milan
Abstract
<jats:title>Abstract</jats:title> <jats:p>Motivated by asymptotic symmetry groups in general relativity, we consider projective unitary representations <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\overline{\rho }$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> </jats:alternatives> </jats:inline-formula> of the Lie group <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{\,\textrm{Diff}\,}}_c(M)$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mspace/> <mml:mtext>Diff</mml:mtext> <mml:mspace/> </mml:mrow> <mml:mi>c</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> of compactly supported diffeomorphisms of a smooth manifold <jats:italic>M</jats:italic> that satisfy a so-called generalized positive energy condition. In particular, this captures representations that are in a suitable sense compatible with a KMS state on the von Neumann algebra generated by <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\overline{\rho }$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> </jats:alternatives> </jats:inline-formula>. We show that if <jats:italic>M</jats:italic> is connected and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$\dim (M) &gt; 1$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>dim</mml:mo> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula>, then any such representation is necessarily trivial on the identity component <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{\,\textrm{Diff}\,}}_c(M)_0$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mspace/> <mml:mtext>Diff</mml:mtext> <mml:mspace/> </mml:mrow> <mml:mi>c</mml:mi> </mml:msub> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula>. As an intermediate step towards this result, we determine the continuous second Lie algebra cohomology <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$H^2_\textrm{ct}(\mathcal {X}_c(M), \mathbb {R})$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mtext>ct</mml:mtext> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>c</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> of the Lie algebra of compactly supported vector fields. This is subtly different from Gelfand–Fuks cohomology in view of the compact support condition.</jats:p>
Publishing Year
Journal Title
Communications in Mathematical Physics
Volume
406
Issue
2
Article Number
45
LibreCat-ID

Cite this

Janssens B, Niestijl M. Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms. Communications in Mathematical Physics. 2025;406(2). doi:10.1007/s00220-024-05226-w
Janssens, B., & Niestijl, M. (2025). Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms. Communications in Mathematical Physics, 406(2), Article 45. https://doi.org/10.1007/s00220-024-05226-w
@article{Janssens_Niestijl_2025, title={Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms}, volume={406}, DOI={10.1007/s00220-024-05226-w}, number={245}, journal={Communications in Mathematical Physics}, publisher={Springer Science and Business Media LLC}, author={Janssens, Bas and Niestijl, Milan}, year={2025} }
Janssens, Bas, and Milan Niestijl. “Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms.” Communications in Mathematical Physics 406, no. 2 (2025). https://doi.org/10.1007/s00220-024-05226-w.
B. Janssens and M. Niestijl, “Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms,” Communications in Mathematical Physics, vol. 406, no. 2, Art. no. 45, 2025, doi: 10.1007/s00220-024-05226-w.
Janssens, Bas, and Milan Niestijl. “Generalized Positive Energy Representations of the Group of Compactly Supported Diffeomorphisms.” Communications in Mathematical Physics, vol. 406, no. 2, 45, Springer Science and Business Media LLC, 2025, doi:10.1007/s00220-024-05226-w.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar