Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
448 Publications
2019 | Conference Paper | LibreCat-ID: 15011 |

Tornede, A., Wever, M. D., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019 (pp. 135–146). Dortmund: KIT Scientific Publishing, Karlsruhe.
LibreCat
| Files available
2019 | Conference Paper | LibreCat-ID: 15013
Brinker, K., & Hüllermeier, E. (2019). A Reduction of Label Ranking to Multiclass Classification. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases. Würzburg, Germany.
LibreCat
2019 | Conference Paper | LibreCat-ID: 15014
Hüllermeier, E., Couso, I., & Diestercke, S. (2019). Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants. In Proceedings SUM 2019, International Conference on Scalable Uncertainty Management.
LibreCat
2019 | Journal Article | LibreCat-ID: 15015
Henzgen, S., & Hüllermeier, E. (2019). Mining Rank Data. ACM Transactions on Knowledge Discovery from Data, 1–36. https://doi.org/10.1145/3363572
LibreCat
| DOI
2019 | Conference Abstract | LibreCat-ID: 13132
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. In INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (pp. 273–274). Bonn: Gesellschaft für Informatik e.V.
LibreCat
2019 | Conference Paper | LibreCat-ID: 10232 |

Wever, M. D., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. Presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA.
LibreCat
| Files available
2019 | Journal Article | LibreCat-ID: 20243
Rohlfing, K., Leonardi, G., Nomikou, I., Rączaszek-Leonardi, J., & Hüllermeier, E. (2019). Multimodal Turn-Taking: Motivations, Methodological Challenges, and Novel Approaches. IEEE Transactions on Cognitive and Developmental Systems. https://doi.org/10.1109/TCDS.2019.2892991
LibreCat
| DOI
2018 | Conference Paper | LibreCat-ID: 2479 |

Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In SCC. San Francisco, CA, USA: IEEE. https://doi.org/10.1109/SCC.2018.00039
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 2857 |

Mohr, F., Lettmann, T., Hüllermeier, E., & Wever, M. D. (2018). Programmatic Task Network Planning. In Proceedings of the 1st ICAPS Workshop on Hierarchical Planning (pp. 31–39). Delft, Netherlands: AAAI.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 2471 |

Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-The-Fly Service Construction with Prototypes. In SCC. San Francisco, CA, USA: IEEE Computer Society. https://doi.org/10.1109/SCC.2018.00036
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat
| Files available
| DOI
2018 | Journal Article | LibreCat-ID: 3510 |

Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning, 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3552 |

Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3852 |

Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 2109 |

Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17713 |

Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Automated Multi-Label Classification based on ML-Plan. Arxiv.
LibreCat
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17714 |

Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). Automated machine learning service composition.
LibreCat
| Download (ext.)
2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat
| Files available
| DOI
2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat