Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

449 Publications


2017 | Conference Paper | LibreCat-ID: 10213
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings 27. Workshop Computational Intelligence, Dortmund, Germany 2017 (pp. 1–12).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
Shaker, A., Heldt, W., & Hüllermeier, E. (2017). Learning TSK Fuzzy Rules from Data Streams. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10267
Bräuning, M., Hüllermeier, E., Keller, T., & Glaum, M. (2017). Lexicographic preferences for predictive modeling of human decision making. A new machine learning method with an application  in accounting. European Journal of Operational Research, 258(1), 295–306.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10268
Platenius, M.-C., Shaker, A., Becker, M., Hüllermeier, E., & Schäfer, W. (2017). Imprecise Matching of Requirements Specifications for Software Services Using Fuzzy Logic. IEEE Transactions on Software Engineering, 43(8), 739–759.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10269
Hüllermeier, E. (2017). From Knowledge-based to Data-driven Modeling of Fuzzy Rule-based Systems: A Critical Reflection. The Computing Research Repository  (CoRR).
LibreCat
 

2016 | Journal Article | LibreCat-ID: 24154
Ramaswamy, A., & Bhatnagar, S. (2016). Stochastic recursive inclusion in two timescales with an application to the lagrangian dual problem. Stochastics, 88(8), 1173–1187.
LibreCat
 

2016 | Journal Article | LibreCat-ID: 3318
Melnikov, V., Hüllermeier, E., Kaimann, D., Frick, B., & Gupta, Pritha . (2016). Pairwise versus Pointwise Ranking: A Case Study. Schedae Informaticae, 25. https://doi.org/10.4467/20838476si.16.006.6187
LibreCat | Files available | DOI
 

2016 | Journal Article | LibreCat-ID: 190
Platenius, M. C., Shaker, A., Becker, M., Hüllermeier, E., & Schäfer, W. (2016). Imprecise Matching of Requirements Specifications for Software Services using Fuzzy Logic. IEEE Transactions on Software Engineering (TSE), Presented at ICSE 2017, (8), 739–759. https://doi.org/10.1109/TSE.2016.2632115
LibreCat | Files available | DOI
 

2016 | Conference Paper | LibreCat-ID: 184
Melnikov, V., & Hüllermeier, E. (2016). Learning to Aggregate Using Uninorms. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD 2016) (pp. 756–771). https://doi.org/10.1007/978-3-319-46227-1_47
LibreCat | Files available | DOI
 

2016 | Encyclopedia Article | LibreCat-ID: 10785
Fürnkranz, J., & Hüllermeier, E. (2016). Preference Learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15400
Labreuche, C., Hüllermeier, E., Vojtas, P., & Fallah Tehrani, A. (2016). On the identifiability of models  in multi-criteria preference learning. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), in Proceedings DA2PL 2016 EURO Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15401
Schäfer, D., & Hüllermeier, E. (2016). Preference -based reinforcement learning using dyad ranking. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), in Proceedings DA2PL`2016 Euro Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn, Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15402
Couso, I., Ahmadi Fahandar, M., & Hüllermeier, E. (2016). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), in Proceedings DA2PL 2016 EURO Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15403
Lu, S., & Hüllermeier, E. (2016). Support vector classification on noisy data using fuzzy superset losses. In E. Hüllermeier, F. Hoffmann, & R. Mikut (Eds.), in Proceedings 26th Workshop Computational Intelligence, Dortmund Germany (pp. 1–8). KIT Scientific Publishing.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15404
Schäfer, D., & Hüllermeier, E. (2016). Plackett-Luce networks for dyad ranking. In in Workshop LWDA “Lernen, Wissen, Daten, Analysen” Potsdam, Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15111
Pfannschmidt, K., Hüllermeier, E., Held, S., & Neiger, R. (2016). Evaluating tests in medical  diagnosis-Combining machine learning with game-theoretical concepts. In In Proceedings IPMU 16th International Conference on Information Processing and Management  of Uncertainty in Knowledge-Based Systems, Part 1, Eindhoven, The Netherlands (pp. 450–461). Springer.
LibreCat
 

2016 | Journal Article | LibreCat-ID: 16041
Leinweber, M., Fober, T., Strickert, M., Baumgärtner, L., Klebe, G., Freisleben, B., & Hüllermeier, E. (2016). CavSimBase: A database for large scale comparison of protein binding sites. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1423–1434.
LibreCat
 

2016 | Dissertation | LibreCat-ID: 141
Mohr, F. (2016). Towards Automated Service Composition Under Quality Constraints. Universität Paderborn. https://doi.org/10.17619/UNIPB/1-171
LibreCat | DOI
 

2016 | Book Chapter | LibreCat-ID: 10214
Fürnkranz, J., & Hüllermeier, E. (2016). Preference Learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer.
LibreCat
 

2016 | Conference (Editor) | LibreCat-ID: 10221
Hoffmann, F., Hüllermeier, E., & Mikut, R. (Eds.). (2016). Proceedings 26. Workshop Computational Intelligence KIT Scientific Publishing, Karlsruhe, Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10222
Jasinska, K., Dembczynski, K., Busa-Fekete, R., Klerx, T., & Hüllermeier, E. (2016). Extreme F-measure maximization using sparse probability estimates . In M. F. Balcan & K. Q. Weinberger (Eds.), Proceedings ICML-2016, 33th International Conference on Machine Learning, New York, USA.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10223
Melnikov, V., & Hüllermeier, E. (2016). Learning to aggregate using uninorms,  in Proceedings ECML/PKDD-2016. In European Conference on Machine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy (pp. 756–771).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10224
Dembczynski, K., Kotlowski, W., Waegeman, W., Busa-Fekete, R., & Hüllermeier, E. (2016). Consistency of probalistic classifier trees. In In Proceedings ECML/PKDD European Conference on Maschine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy (pp. 511–526).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10225
Shabani, A., Paul, A., Platon, R., & Hüllermeier, E. (2016). Predicting the electricity consumption of buildings: An improved CBR approach. In In Proceedings ICCBR, 24th International Conference on Case-Based Reasoning, Atlanta, GA, USA (pp. 356–369).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10226
Pfannschmidt, K., Hüllermeier, E., Held, S., & Neiger, R. (2016). Evaluating tests in medical  diagnosis-Combining machine learning with game-theoretical concepts. In In Proceedings IPMU 16th International Conference on Information Processing and Management  of Uncertainty in Knowledge-Based Systems, Part 1, Eindhoven, The Netherlands (pp. 450–461). Springer.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10227
Labreuche, C., Hüllermeier, E., Vojtas, P., & Fallah Tehrani, A. (2016). On the Identifiability of models in multi-criteria preference learning . In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10228
Schäfer, D., & Hüllermeier, E. (2016). Preference-Based Reinforcement Learning Using Dyad Ranking. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10229
Couso, I., Ahmadi Fahandar, M., & Hüllermeier, E. (2016). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10230
Lu, S., & Hüllermeier, E. (2016). Support vector classification on noisy data using fuzzy supersets losses. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings 26. Workshop Computational Intelligence, KIT Scientific Publishing (pp. 1–8).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10231
Schäfer, D., & Hüllermeier, E. (2016). Plackett-Luce networks for dyad ranking. In In Workshop LWDA “Lernen, Wissen, Daten, Analysen.”
LibreCat
 

2016 | Conference (Editor) | LibreCat-ID: 10263
Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., & van Harmelen, F. (Eds.). (2016). ECAI 2016, 22nd European Conference on Artificial Intelligence, including PAIS 2016, Prestigious Applications of Artificial Intelligence (Vol. 285). The Hague, The Netherlands: IOS Press.
LibreCat
 

2016 | Journal Article | LibreCat-ID: 10264
Leinweber, M., Fober, T., Strickert, M., Baumgärtner, L., Klebe, G., Freisleben, B., & Hüllermeier, E. (2016). CavSimBase: A database for large scale comparison of protein binding sites. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1423–1434.
LibreCat
 

2016 | Journal Article | LibreCat-ID: 10266
Riemenschneider, M., Senge, R., Neumann, U., Hüllermeier, E., & Heider, D. (2016). Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification. BioData Mining, 9(10).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 280
Arifulina, S., Platenius, M. C., Mohr, F., Engels, G., & Schäfer, W. (2015). Market-Specific Service Compositions: Specification and Matching. In Proceedings of the IEEE 11th World Congress on Services (SERVICES), Visionary Track: Service Composition for the Future Internet (pp. 333--340). https://doi.org/10.1109/SERVICES.2015.58
LibreCat | Files available | DOI
 

2015 | Journal Article | LibreCat-ID: 323
Jungmann, A., & Mohr, F. (2015). An approach towards adaptive service composition in markets of composed services. Journal of Internet Services and Applications, (1), 1–18. https://doi.org/10.1186/s13174-015-0022-8
LibreCat | Files available | DOI
 

2015 | Conference Paper | LibreCat-ID: 324
Mohr, F. (2015). A Metric for Functional Reusability of Services. In Proceedings of the 14th International Conference on Software Reuse (ICSR) (pp. 298--313). https://doi.org/10.1007/978-3-319-14130-5_21
LibreCat | Files available | DOI
 

2015 | Conference Paper | LibreCat-ID: 319
Mohr, F., Jungmann, A., & Kleine Büning, H. (2015). Automated Online Service Composition. In Proceedings of the 12th IEEE International Conference on Services Computing (SCC) (pp. 57--64). https://doi.org/10.1109/SCC.2015.18
LibreCat | Files available | DOI
 

2015 | Journal Article | LibreCat-ID: 4792
Senge, R., & Hüllermeier, E. (2015). Fast Fuzzy Pattern Tree Learning for Classification. IEEE Transactions on Fuzzy Systems, 23(6), 2024–2033. https://doi.org/10.1109/tfuzz.2015.2396078
LibreCat | Files available | DOI
 

2015 | Conference Paper | LibreCat-ID: 15406
Schäfer, D., & Hüllermeier, E. (2015). Preference-based meta-learning using dyad ranking: Recommending algorithms in cold-start situations. In in Proceedings of the 2015 international Workshop on Meta-Learning and Algorithm Selection co-located ECML/PKDD, Porto, Portugal (pp. 110–111).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 15749
Paul, A., & Hüllermeier, E. (2015). A cbr approach to the angry birds game. In In Workshop Proceedings from ICCBR, 23rd International Conference on Case-Based Reasoning, Frankfurt, Germany (pp. 68–77).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 15750
Ewerth, R., Balz, A., Gehlhaar, J., Dembczynski, K., & Hüllermeier, E. (2015). Depth estimation in monocular images: Quantitative versus qualitative approaches. In F. Hoffmann & E. Hüllermeier (Eds.), In Proceedings 25. Workshop Computational Intelligence, Dortmund, Germany (pp. 235–240). KIT Scientific Publishing.
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 15751
Lu, S., & Hüllermeier, E. (2015). Locally weighted regression through data imprecisiation. In F. Hoffmann & E. Hüllermeier (Eds.), in Proceedings 25th Workshop Computational Intelligence, Dortmund Germany (pp. 97–104). KIT Scientific Publishing.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 16049
Senge, R., & Hüllermeier, E. (2015). Fast fuzzy pattern tree learning for classification . IEEE Transactions on Fuzzy Systems, 23(6), 2024–2033.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 16051
Hüllermeier, E. (2015). From knowledge-based to data driven fuzzy modeling: Development, criticism and alternative directions. Informatik Spektrum, 38(6), 500–509.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 16053
Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and Systems, 281, 292–299.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 16058
Waegeman, W., Dembczynski, K., Jachnik, A., Cheng, W., & Hüllermeier, E. (2015). On the Bayes-optimality of F-measure maximizers. Journal of Machine Learning Research, 15, 3313–3368.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 16067
Shaker, A., & Hüllermeier, E. (2015). Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study. Neurocomputing, 150, 250–264.
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10234
Hüllermeier, E., & Minor, M. (2015). Case-Based Reasoning Research and Development . In in Proceedings 23rd International Conference on Case-Based Reasoning (ICCBR 2015) LNAI 9343. Springer.
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10235
Hoffmann, F., & Hüllermeier, E. (2015). Proceedings 25. Workshop Computational Intelligence KIT Scientific Publishing.
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10236
Abdel-Aziz, A., & Hüllermeier, E. (2015). Case Base Maintenance in Preference-Based CBR. In In Proceedings 23rd International Conference on Case-Based Reasoning (ICCBR 2015) (pp. 1–14).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10237
Szörényi, B., Busa-Fekete, R., Weng, P., & Hüllermeier, E. (2015). Qualitative Multi-Armed Bandits: A Quantile-Based Approach. In In Proceedings International Conference on Machine Learning (ICML 2015) (pp. 1660–1668).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10238
Schäfer, D., & Hüllermeier, E. (2015). Dyad Ranking Using A Bilinear Plackett-Luce Model. In in Proceedings European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD) (pp. 227–242).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10239
Hüllermeier, E., & Cheng, W. (2015). Superset Learning Based on Generalized Loss Minimization . In in Proceedings European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD) (pp. 260–275).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10240
Henzgen, S., & Hüllermeier, E. (2015). Weighted Rank Correlation : A Flexible Approach Based on Fuzzy Order Relations. In in Proceedings European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD) (pp. 422–437).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10241
Szörényi, B., Busa-Fekete, R., Paul, A., & Hüllermeier, E. (2015). Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach. In in Advances in Neural Information Processing Systems 28 (NIPS 2015) (pp. 604–612).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10242
Szörényi, B., Busa-Fekete, R., Dembczynski, K., & Hüllermeier, E. (2015). Online F-Measure Optimization. In in Advances in Neural Information Processing Systems 28 (NIPS 2015) (pp. 595–603).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10243
El Mesaoudi-Paul, A., & Hüllermeier, E. (2015). A CBR Approach to the Angry Birds Game. In in Workshop Proc. 23rd International Conference on Case-Based Reasoning (ICCBR 2015) (pp. 68–77).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10244
Schäfer, D., & Hüllermeier, E. (2015). Preference-Based Meta- Learning Using Dyad Ranking: Recommending Algorithms in Cold-Start Situations. In in Proceedings of the 2015 International Workshop on Meta-Learning and Algorithm Selection (MetaSel@PKDD/ECML) (pp. 110–111).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10245
Lu, S., & Hüllermeier, E. (2015). Locally weighted regression through data imprecisiation. In Proceedings 25. Workshop Computational Intelligence (pp. 97–104).
LibreCat
 

2015 | Conference Paper | LibreCat-ID: 10246
Ewerth, R., Balz, A., Gehlhaar, J., Dembczynski, K., & Hüllermeier, E. (2015). Depth estimation in monocular images: Quantitative versus qualitative approaches. In Proceedings 25. Workshop Computational Intelligence (pp. 235–240).
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10319
Waegeman, W., Dembczynski, K., Jachnik, A., Cheng, W., & Hüllermeier, E. (2015). On the Bayes-Optimality of F-Measure Maximizers. In Journal of Machine Learning Research, 15, 3333–3388.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10320
Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and Systems, 281, 292–299.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10321
Shaker, A., & Hüllermeier, E. (2015). Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study. Neurocomputing, 150, 250–264.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10322
Hüllermeier, E. (2015). From Knowledge-based to Data-driven fuzzy modeling-Development, criticism and alternative directions. Informatik Spektrum, 38(6), 500–509.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10323
Garcia-Jimenez, S., Bustince, U., Hüllermeier, E., Mesiar, R., Pal, N. R., & Pradera, A. (2015). Overlap Indices: Construction of and Application of Interpolative Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 23(4), 1259–1273.
LibreCat
 

2015 | Journal Article | LibreCat-ID: 10324
Senge, R., & Hüllermeier, E. (2015). Fast Fuzzy Pattern Tree Learning of Classification. IEEE Transactions on Fuzzy Systems, 23(6), 2024–2033.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 24155
Basavaraju, M., Chandran, L. S., Rajendraprasad, D., & Ramaswamy, A. (2014). Rainbow connection number of graph power and graph products. Graphs and Combinatorics, 30(6), 1363–1382.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 24156
Basavaraju, M., Chandran, L. S., Rajendraprasad, D., & Ramaswamy, A. (2014). Rainbow connection number and radius. Graphs and Combinatorics, 30(2), 275–285.
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 353
Mohr, F., & Walther, S. (2014). Template-based Generation of Semantic Services. In Proceedings of the 14th International Conference on Software Reuse (ICSR) (pp. 188–203). https://doi.org/10.1007/978-3-319-14130-5_14
LibreCat | Files available | DOI
 

2014 | Conference Paper | LibreCat-ID: 447
Jungmann, A., Mohr, F., & Kleinjohann, B. (2014). Combining Automatic Service Composition with Adaptive Service Recommendation for Dynamic Markets of Services. In Proceedings of the 10th World Congress on Services (SERVICES) (pp. 346–353). https://doi.org/10.1109/SERVICES.2014.68
LibreCat | Files available | DOI
 

2014 | Conference Paper | LibreCat-ID: 457
Jungmann, A., Mohr, F., & Kleinjohann, B. (2014). Applying Reinforcement Learning for Resolving Ambiguity in Service Composition. In Proceedings of the 7th International Conference on Service Oriented Computing and Applications (SOCA) (pp. 105–112). https://doi.org/10.1109/SOCA.2014.48
LibreCat | Files available | DOI
 

2014 | Conference Paper | LibreCat-ID: 428
Mohr, F. (2014). Estimating Functional Reusability of Services. In Proceedings of the 12th International Conference on Service Oriented Computing (ICSOC) (pp. 411–418).
LibreCat | Files available | Download (ext.)
 

2014 | Journal Article | LibreCat-ID: 16046
Agarwal, M., Fallah Tehrani, A., & Hüllermeier, E. (2014). Preference-based learning of ideal solutions in TOPSIS-like decision models. Journal of Multi-Criteria Decision Analysis, 22(3–4).
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16060
Krotzky, T., Fober, T., Hüllermeier, E., & Klebe, G. (2014). Extended graph-based models for enhanced similarity search in Cabase. IEEE/ACM Transactions of Computational Biology and Bioinformatics, 11(5), 878–890.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16064
Hüllermeier, E. (2014). Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization. International Journal of Approximate Reasoning, 55(7), 1519–1534.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16069
Henzgen, S., Strickert, M., & Hüllermeier, E. (2014). Visualization of evolving fuzzy-rule-based systems. Evolving Systems, 5, 175–191.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16077
Busa-Fekete, R., Szörenyi, B., Weng, P., Cheng, W., & Hüllermeier, E. (2014). Preference-based reinforcement learning: evolutionary direct policy search using a preference-based racing algorithm. Machine Learning, 97(3), 327–351.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16078
Krempl, G., Zliobaite, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V., … Stefanowski, J. (2014). Open challenges for data stream mining research. SIGKDD Explorations, 16(1), 1–10.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16079
Strickert, M., Bunte, K., Schleif, F. M., & Hüllermeier, E. (2014). Correlation-based embedding of pairwise score data. Neurocomputing, 141, 97–109.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16080
Shaker, A., & Hüllermeier, E. (2014). Survival analysis on data streams: Analyzing temporal events in dynamically changing environments. International Journal of Applied Mathematics and Computer Science, 24(1), 199–212.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16082
Senge, R., Bösner, S., Dembczynski, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., & Hüllermeier, E. (2014). Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences, 255, 16–29.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 16083
Donner-Banzhoff, N., Haasenritter, J., Hüllermeier, E., Viniol, A., Bösner, S., & Becker, A. (2014). The comprehensive diagnostic study is suggested as a design to model the diagnostic process. Journal of Clinical Epidemiology, 2(67), 124–132.
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10247
Busa-Fekete, R., Szörényi, B., & Hüllermeier, E. (2014). PAC Rank Elicitation through Adaptive Sampling of Stochastic Pairwise Preferences. In Proceedings AAAI 2014, Quebec, Canada (pp. 1701–1707).
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10248
Busa-Fekete, R., & Hüllermeier, E. (2014). A Survey of Preference-Based Online Learning with Bandit Algorithms. In Proceedings Int. Conf. on Algorithmic Learning Theory (ALT), Bled, Slovenia (pp. 18–39).
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10249
Henzgen, S., & Hüllermeier, E. (2014). Mining Rank Data. In Proceedings Discovery Science, Bled,Slovenia (pp. 123–134).
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10250
Fallah Tehrani, A., Strickert, M., & Hüllermeier, E. (2014). The Choquet kernel for monotone data. In Proceedings ESANN , Bruges, Belgium.
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10251
Abdel-Aziz, A., Strickert, M., & Hüllermeier, E. (2014). Learning Solution Similarity in Preference-Based CBR. In Proceedings Int. Conf. Case-Based Reasoning (ICCBR), Cork, Ireland (pp. 17–31).
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10253
Schäfer, D., & Hüllermeier, E. (2014). Dyad Ranking Using A Bilinear Plackett-Luce Model. In Proceedings Lernen-Wissensentdeckung-Adaptivität (LWA), Aachen, Germany (pp. 32–33).
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10254
Calders, T., Esposito, F., Hüllermeier, E., & Meo, R. (2014). Machine Learning and Knowledge Discovery in Databases-European Conf. ECML/PKDD, Nancy, France. In Proceedings, Parts I-III. Lecture Notes in Computer Science (pp. 8724–8726). Springer.
LibreCat
 

2014 | Conference Paper | LibreCat-ID: 10295
Fürnkranz, J., Hüllermeier, E., Rudin, C., Slowinski, R., & Sanner, S. (2014). Preference Learning (Dagstuhl Seminar 14101) Dagstuhl Reports (Vol. 4, pp. 1–27).
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10296
Shaker, A., & Hüllermeier, E. (2014). Survival analysis on data streams: Analyzing temporal events in dynamically changing environments. Applied Mathematics and Computer Science, 24(1), 199–212.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10297
Hoffmann, F., Hüllermeier, E., & Kroll, A. (2014). Ausgewählte Beiträge des GMA-Fachausschusses 5.14. Computational Intelligence Automatisierungstechnik, 62(10), 685–686.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10298
Calders, T., Esposito, F., Hüllermeier, E., & Meo, R. (2014). Guest editors`introduction:special issue of the ECML/PKDD 2014 journal track. Data Min. Knowledge Discovery, 28(5–6), 1129–1133.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10299
Henzgen, S., Strickert, M., & Hüllermeier, E. (2014). Visualization of evolving fuzzy rule-based systems. Evolving Systems, 5(3), 175–191.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10308
Hüllermeier, E. (2014). Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization. Int. J. Approx. Reasoning, 55(7), 1519–1534.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10309
Hüllermeier, E. (2014). Rejoinder on "Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization. Int. J. Approx. Reasoning, 55(7), 1609–1613.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10310
Strickert, M., Bunte, K., Schleif, F.-M., & Hüllermeier, E. (2014). Correlation-based embedding of pairwise score data. Neurocomputing, 141, 97–109.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10311
Senge, R., Bösner, S., Dembczynski, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., & Hüllermeier, E. (2014). Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences, 255, 16–29.
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10312
Mernberger, M., Moog, M., Stork, S., Zauner, S., Maier, U. G., & Hüllermeier, E. (2014). Protein Sub-Cellular Localization Prediction for Special compartments via Optimized Time Series Distances. J. Bioinformatics and Computational Biology, 12(1).
LibreCat
 

2014 | Journal Article | LibreCat-ID: 10313
Calders, T., Esposito, F., Hüllermeier, E., & Meo, R. (2014). Guest editors`introduction:special issue of the ECML/PKDD 2014 journal track. Machine Learning, 97(1–2), 1–3.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed