Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

428 Publications


2020 | Conference Paper | LibreCat-ID: 17407
Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. In Discovery Science.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 19953
Damke, C., Melnikov, V., & Hüllermeier, E. (2020). A Novel Higher-order Weisfeiler-Lehman Graph Convolution. In S. Jialin Pan & M. Sugiyama (Eds.), Proceedings of the 12th Asian Conference on Machine Learning (ACML 2020) (Vol. 129, pp. 49–64). Bangkok, Thailand: PMLR.
LibreCat | Files available | arXiv
 

2020 | Conference Paper | LibreCat-ID: 17408
Hanselle, J. M., Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Hybrid Ranking and Regression for Algorithm Selection. In KI 2020: Advances in Artificial Intelligence.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 18014
El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., & Tierney, K. (2020). Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach. In Learning and Intelligent Optimization. LION 2020. (Vol. 12096, pp. 216–232). Cham: Springer. https://doi.org/10.1007/978-3-030-53552-0_22
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 17605
Heid, S. H., Wever, M. D., & Hüllermeier, E. (n.d.). Reliable Part-of-Speech Tagging of Historical Corpora through Set-Valued Prediction. Journal of Data Mining and Digital Humanities. episciences.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 15629
Wever, M. D., Tornede, A., Mohr, F., & Hüllermeier, E. (n.d.). LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification. Presented at the Symposium on Intelligent Data Analysis, Konstanz, Germany: Springer.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 20306
Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Towards Meta-Algorithm Selection. In Workshop MetaLearn 2020 @ NeurIPS 2020. Online.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17424
Tornede, T., Tornede, A., Wever, M. D., Mohr, F., & Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL them all. In Proceedings of the ECMLPKDD 2020.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 19521
Pfannschmidt, K., & Hüllermeier, E. (2020). Learning Choice Functions via Pareto-Embeddings. In Lecture Notes in Computer Science. Cham. https://doi.org/10.1007/978-3-030-58285-2_30
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 16725
Richter, C., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (n.d.). Algorithm Selection for Software Validation Based on Graph Kernels. Journal of Automated Software Engineering.
LibreCat
 

2020 | Preprint | LibreCat-ID: 18017
El Mesaoudi-Paul, A., Bengs, V., & Hüllermeier, E. (n.d.). Online Preselection with Context Information under the Plackett-Luce  Model. ArXiv:2002.04275.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 18276
Tornede, A., Wever, M. D., Werner, S., Mohr, F., & Hüllermeier, E. (2020). Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In ACML 2020. Bangkok, Thailand.
LibreCat | Download (ext.)
 

2019 | Journal Article | LibreCat-ID: 14028
Bengs, V., & Holzmann, H. (2019). Adaptive confidence sets for kink estimation. Electronic Journal of Statistics, 1523–1579. https://doi.org/10.1214/19-ejs1555
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15002
Waegeman, W., Dembczynski, K., & Hüllermeier, E. (2019). Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 293–324. https://doi.org/10.1007/s10618-018-0595-5
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15014
Hüllermeier, E., Couso, I., & Diestercke, S. (2019). Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants. In Proceedings SUM 2019, International Conference on Scalable Uncertainty Management.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15007
Melnikov, V., & Hüllermeier, E. (2019). Learning to Aggregate: Tackling the Aggregation/Disaggregation Problem for OWA. In Proceedings ACML, Asian Conference on Machine Learning (Proceedings of Machine Learning Research, 101). https://doi.org/10.1016/j.jmva.2019.02.017
LibreCat | Files available | DOI
 

2019 | Journal Article | LibreCat-ID: 17565
Merten, M.-L., Seemann, N., & Wever, M. D. (2019). Grammatikwandel digital-kulturwissenschaftlich erforscht. Mittelniederdeutscher Sprachausbau im interdisziplinären Zugriff. Niederdeutsches Jahrbuch, (142), 124–146.
LibreCat
 

2019 | Preprint | LibreCat-ID: 18018
Bengs, V., & Holzmann, H. (2019). Uniform approximation in classical weak convergence theory. ArXiv:1903.09864.
LibreCat
 

2019 | Preprint | LibreCat-ID: 19523
Pfannschmidt, K., Gupta, P., & Hüllermeier, E. (2019). Learning Choice Functions: Concepts and Architectures. ArXiv:1901.10860.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15003
Mortier, T., Wydmuch, M., Dembczynski, K., Hüllermeier, E., & Waegeman, W. (2019). Set-Valued Prediction in Multi-Class Classification. In Proceedings of the 31st Benelux Conference on Artificial Intelligence {(BNAIC} 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15015
Henzgen, S., & Hüllermeier, E. (2019). Mining Rank Data. ACM Transactions on Knowledge Discovery from Data, 1–36. https://doi.org/10.1145/3363572
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 10232
Wever, M. D., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. Presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 10578
Tagne, V. K., Fotso, S., Fono, L. A., & Hüllermeier, E. (2019). Choice Functions Generated by Mallows and Plackett–Luce Relations. New Mathematics and Natural Computation, 15(2), 191–213.
LibreCat
 

2019 | Book Chapter | LibreCat-ID: 15004
Ahmadi Fahandar, M., & Hüllermeier, E. (2019). Feature Selection for Analogy-Based Learning to Rank. In Discovery Science. Cham. https://doi.org/10.1007/978-3-030-33778-0_22
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15009
Epple, N., Dari, S., Drees, L., Protschky, V., & Riener, A. (2019). Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries. In 2019 IEEE Intelligent Vehicles Symposium (IV). https://doi.org/10.1109/ivs.2019.8814100
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011
Tornede, A., Wever, M. D., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019 (pp. 135–146). Dortmund: KIT Scientific Publishing, Karlsruhe.
LibreCat | Files available
 

2019 | Book Chapter | LibreCat-ID: 15005
Ahmadi Fahandar, M., & Hüllermeier, E. (2019). Analogy-Based Preference Learning with Kernels. In KI 2019: Advances in Artificial Intelligence. Cham. https://doi.org/10.1007/978-3-030-30179-8_3
LibreCat | DOI
 

2019 | Preprint | LibreCat-ID: 18016
Bengs, V., & Hüllermeier, E. (n.d.). Preselection Bandits under the Plackett-Luce Model. ArXiv:1907.06123.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 13132
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. In INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (pp. 273–274). Bonn: Gesellschaft für Informatik e.V.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 14027
Bengs, V., Eulert, M., & Holzmann, H. (2019). Asymptotic confidence sets for the jump curve in bivariate regression problems. Journal of Multivariate Analysis, 291–312. https://doi.org/10.1016/j.jmva.2019.02.017
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15001
Couso, I., Borgelt, C., Hüllermeier, E., & Kruse, R. (2019). Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational Intelligence Magazine, 31–44. https://doi.org/10.1109/mci.2018.2881642
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
Nguyen, V.-L., Destercke, S., & Hüllermeier, E. (2019). Epistemic Uncertainty Sampling. In Discovery Science. Cham. https://doi.org/10.1007/978-3-030-33778-0_7
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15013
Brinker, K., & Hüllermeier, E. (2019). A Reduction of Label Ranking to Multiclass Classification. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases. Würzburg, Germany.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 8868
Wever, M. D., Mohr, F., Hüllermeier, E., & Hetzer, A. (2019). Towards Automated Machine Learning for Multi-Label Classification. Presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 15025
Wever, M. D., van Rooijen, L., & Hamann, H. (n.d.). Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets. Evolutionary Computation. https://doi.org/10.1162/evco_a_00266
LibreCat | Files available | DOI
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Proc. 21st Int. Conference on Discovery Science (DS) (pp. 161–175).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2479
Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In SCC. San Francisco, CA, USA: IEEE. https://doi.org/10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
 

2018 | Preprint | LibreCat-ID: 17713
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Automated Multi-Label Classification based on ML-Plan. Arxiv.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
Pfannschmidt, K., Gupta, P., & Hüllermeier, E. (2018). Deep Architectures for Learning Context-dependent Ranking Functions. ArXiv:1803.05796.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl, M. (2018). Learning about learning curves from dataset properties. Universität Paderborn.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on  Noisy Sorting. In Proc. 35th Int. Conference on Machine Learning (ICML) (pp. 3469–3477).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI) (pp. 5089–5095).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-The-Fly Service Construction with Prototypes. In SCC. San Francisco, CA, USA: IEEE Computer Society. https://doi.org/10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Preprint | LibreCat-ID: 17714
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). Automated machine learning service composition.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. In Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24 (pp. 15–20).
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857
Mohr, F., Lettmann, T., Hüllermeier, E., & Wever, M. D. (2018). Programmatic Task Network Planning. In Proceedings of the 1st ICAPS Workshop on Hierarchical Planning (pp. 31–39). Delft, Netherlands: AAAI.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552
Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
Mencia, E. L., Fürnkranz, J., Hüllermeier, E., & Rapp, M. (2018). Learning interpretable rules for multi-label classification. In H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, & M. A. J. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 81–113). Springer.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In K. Eckart & D. Schlechtweg (Eds.), Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. Stuttgart, Germany.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3510
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning, 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf, H. (2018). Ranking of Classification Algorithms in AutoML. Universität Paderborn.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 10204
Ewerth, R., Springstein, M., Müller, E., Balz, A., Gehlhaar, J., Naziyok, T., … Hüllermeier, E. (2017). Estimating relative depth in single images via rankboost. In Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017) (pp. 919–924).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
Ahmadi Fahandar, M., & Hüllermeier, E. (2017). Learning to Rank based on Analogical Reasoning. In Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
Shaker, A., Heldt, W., & Hüllermeier, E. (2017). Learning TSK Fuzzy Rules from Data Streams. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180
Wever, M. D., Mohr, F., & Hüllermeier, E. (2017). Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization. In 27th Workshop Computational Intelligence. Dortmund.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 15110
Couso, I., Dubois, D., & Hüllermeier, E. (2017). Maximum likelihood estimation and coarse data. In in Proceedings SUM 2017, 11th International Conference on Scalable Uncertainty Management, Granada, Spain (pp. 3–16). Springer.
LibreCat
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
Schnitker, N. N. (2017). Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies. Universität Paderborn.
LibreCat
 

2017 | Encyclopedia Article | LibreCat-ID: 10589
Fürnkranz, J., & Hüllermeier, E. (2017). Preference Learning. In Encyclopedia of Machine Learning and Data Mining (pp. 1000–1005).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
Ahmadi Fahandar, M., Hüllermeier, E., & Couso, I. (2017). Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening. In Proc. 34th Int. Conf. on Machine Learning (ICML 2017) (pp. 1078–1087).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10212
Hoffmann, F., Hüllermeier, E., & Mikut, R. (2017). (Hrsg.) Proceedings 27. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, Germany 2017.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10267
Bräuning, M., Hüllermeier, E., Keller, T., & Glaum, M. (2017). Lexicographic preferences for predictive modeling of human decision making. A new machine learning method with an application  in accounting. European Journal of Operational Research, 258(1), 295–306.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15399
Czech, M., Hüllermeier, E., Jacobs, M. C., & Wehrheim, H. (2017). Predicting rankings of software verification tools. In in Proceedings ESEC/FSE Workshops 2017 - 3rd ACM SIGSOFT, International Workshop on Software Analytics (SWAN 2017), Paderborn Germany.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
Gupta, P., Hetzer, A., Tornede, T., Gottschalk, S., Kornelsen, A., Osterbrink, S., … Hüllermeier, E. (2017). jPL: A Java-based Software Framework for Preference Learning. Presented at the WDA 2017 Workshops: KDML, FGWM, IR, and FGDB, Rostock.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10213
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings 27. Workshop Computational Intelligence, Dortmund, Germany 2017 (pp. 1–12).
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10268
Platenius, M.-C., Shaker, A., Becker, M., Hüllermeier, E., & Schäfer, W. (2017). Imprecise Matching of Requirements Specifications for Software Services Using Fuzzy Logic. IEEE Transactions on Software Engineering, 43(8), 739–759.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10206
Mohr, F., Lettmann, T., & Hüllermeier, E. (2017). Planning with Independent Task Networks. In Proc. 40th Annual German Conference on Advances in Artificial Intelligence (KI 2017) (pp. 193–206). https://doi.org/10.1007/978-3-319-67190-1_15
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 10207
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting rankings of software verification tools. In Proc. 3rd ACM SIGSOFT Int. I Workshop on Software Analytics (SWAN@ESEC/SIGSOFT FSE 2017 (pp. 23–26).
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10269
Hüllermeier, E. (2017). From Knowledge-based to Data-driven Modeling of Fuzzy Rule-based Systems: A Critical Reflection. The Computing Research Repository  (CoRR).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 115
Jakobs, M.-C., Krämer, J., van Straaten, D., & Lettmann, T. (2017). Certification Matters for Service Markets. In T. P. Marcelo De Barros, Janusz Klink,Tadeus Uhl (Ed.), The Ninth International Conferences on Advanced Service Computing (SERVICE COMPUTATION) (pp. 7–12).
LibreCat | Files available
 

2017 | Book Chapter | LibreCat-ID: 18167
Seemann, N., Merten, M.-L., Geierhos, M., Tophinke, D., & Hlüllermeier, E. (2017). Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German. In Proceedings of Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature.
LibreCat
 

2017 | Mastersthesis | LibreCat-ID: 5724
Hetzer, A., & Tornede, T. (2017). Solving the Container Pre-Marshalling Problem using Reinforcement Learning and Structured Output Prediction. Universität Paderborn.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 71
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting Rankings of Software Verification Tools. In Proceedings of the 3rd International Workshop on Software Analytics (pp. 23–26). https://doi.org/10.1145/3121257.3121262
LibreCat | Files available | DOI
 

2017 | Book Chapter | LibreCat-ID: 10784
Fürnkranz, J., & Hüllermeier, E. (2017). Preference Learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining (Vol. 107, pp. 1000–1005). Springer.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10208
Couso, I., Dubois, D., & Hüllermeier, E. (2017). Maximum Likelihood Estimation and Coarse Data. In Proc. 11th Int. Conf. on Scalable Uncertainty Management (SUM 2017) (pp. 3–16).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1158
Seemann, N., Merten, M.-L., Geierhos, M., Tophinke, D., & Hüllermeier, E. (2017). Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German. In Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (pp. 40–45). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/W17-2206
LibreCat | DOI
 

2017 | Conference Paper | LibreCat-ID: 15397
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the structure of nested dichotomies. A comparison of two heuristics. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), in Proceedings 27th Workshop Computational Intelligence, Dortmund Germany (pp. 1–12). KIT Scientific Publishing.
LibreCat
 

2017 | Report | LibreCat-ID: 72
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting Rankings of Software Verification Competitions.
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 3325
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings. 27. Workshop Computational Intelligence, Dortmund, 23. - 24. November 2017. KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000074341
LibreCat | Files available | DOI
 

2016 | Encyclopedia Article | LibreCat-ID: 10785
Fürnkranz, J., & Hüllermeier, E. (2016). Preference Learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10223
Melnikov, V., & Hüllermeier, E. (2016). Learning to aggregate using uninorms,  in Proceedings ECML/PKDD-2016. In European Conference on Machine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy (pp. 756–771).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10228
Schäfer, D., & Hüllermeier, E. (2016). Preference-Based Reinforcement Learning Using Dyad Ranking. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10230
Lu, S., & Hüllermeier, E. (2016). Support vector classification on noisy data using fuzzy supersets losses. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings 26. Workshop Computational Intelligence, KIT Scientific Publishing (pp. 1–8).
LibreCat
 

2016 | Journal Article | LibreCat-ID: 10266
Riemenschneider, M., Senge, R., Neumann, U., Hüllermeier, E., & Heider, D. (2016). Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification. BioData Mining, 9(10).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15401
Schäfer, D., & Hüllermeier, E. (2016). Preference -based reinforcement learning using dyad ranking. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), in Proceedings DA2PL`2016 Euro Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn, Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10224
Dembczynski, K., Kotlowski, W., Waegeman, W., Busa-Fekete, R., & Hüllermeier, E. (2016). Consistency of probalistic classifier trees. In In Proceedings ECML/PKDD European Conference on Maschine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy (pp. 511–526).
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10229
Couso, I., Ahmadi Fahandar, M., & Hüllermeier, E. (2016). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10231
Schäfer, D., & Hüllermeier, E. (2016). Plackett-Luce networks for dyad ranking. In In Workshop LWDA “Lernen, Wissen, Daten, Analysen.”
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15402
Couso, I., Ahmadi Fahandar, M., & Hüllermeier, E. (2016). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), in Proceedings DA2PL 2016 EURO Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn Germany.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15111
Pfannschmidt, K., Hüllermeier, E., Held, S., & Neiger, R. (2016). Evaluating tests in medical  diagnosis-Combining machine learning with game-theoretical concepts. In In Proceedings IPMU 16th International Conference on Information Processing and Management  of Uncertainty in Knowledge-Based Systems, Part 1, Eindhoven, The Netherlands (pp. 450–461). Springer.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10225
Shabani, A., Paul, A., Platon, R., & Hüllermeier, E. (2016). Predicting the electricity consumption of buildings: An improved CBR approach. In In Proceedings ICCBR, 24th International Conference on Case-Based Reasoning, Atlanta, GA, USA (pp. 356–369).
LibreCat
 

2016 | Conference (Editor) | LibreCat-ID: 10263
Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., & van Harmelen, F. (Eds.). (2016). ECAI 2016, 22nd European Conference on Artificial Intelligence, including PAIS 2016, Prestigious Applications of Artificial Intelligence (Vol. 285). The Hague, The Netherlands: IOS Press.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed