Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

409 Publications


2019 | Journal Article | LibreCat-ID: 14027
Bengs V, Eulert M, Holzmann H. Asymptotic confidence sets for the jump curve in bivariate regression problems. Journal of Multivariate Analysis. 2019:291-312. doi:10.1016/j.jmva.2019.02.017
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15001
Couso I, Borgelt C, Hüllermeier E, Kruse R. Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational Intelligence Magazine. 2019:31-44. doi:10.1109/mci.2018.2881642
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
Nguyen V-L, Destercke S, Hüllermeier E. Epistemic Uncertainty Sampling. In: Discovery Science. Cham; 2019. doi:10.1007/978-3-030-33778-0_7
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15013
Brinker K, Hüllermeier E. A Reduction of Label Ranking to Multiclass Classification. In: Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases. Würzburg, Germany; 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15025
Wever MD, van Rooijen L, Hamann H. Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets. Evolutionary Computation. doi:10.1162/evco_a_00266
LibreCat | Files available | DOI
 

2019 | Conference Abstract | LibreCat-ID: 8868
Wever MD, Mohr F, Hüllermeier E, Hetzer A. Towards Automated Machine Learning for Multi-Label Classification. In: ; 2019.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Proc. 21st Int. Conference on Discovery Science (DS). ; 2018:161-175.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2479
Mohr F, Wever MD, Hüllermeier E, Faez A. (WIP) Towards the Automated Composition of Machine Learning Services. In: SCC. San Francisco, CA, USA: IEEE; 2018. doi:10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852
Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: ICML 2018 AutoML Workshop. ; 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul S, Arenas M, Barceló P, et al., eds. Research Directions for Principles of Data Management. Vol 7.; 2018:1-29.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl M. Learning about Learning Curves from Dataset Properties.; 2018.
LibreCat
 

2018 | Preprint | LibreCat-ID: 17713
Wever MD, Mohr F, Hüllermeier E. Automated Multi-Label Classification based on ML-Plan. 2018.
LibreCat | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul A, Hüllermeier E, Busa-Fekete R. Ranking Distributions based on  Noisy Sorting. In: Proc. 35th Int. Conference on Machine Learning (ICML). ; 2018:3469-3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen V-L, Destercke S, Masson M-H, Hüllermeier E. Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In: Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI). ; 2018:5089-5095.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer D, Hüllermeier E. Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning. 2018;107(5):903-941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
Wever MD, Mohr F, Hüllermeier E. Ensembles of Evolved Nested Dichotomies for Classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM; 2018. doi:10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
Mohr F, Wever MD, Hüllermeier E. On-The-Fly Service Construction with Prototypes. In: SCC. San Francisco, CA, USA: IEEE Computer Society; 2018. doi:10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Discovery Science. Cham: Springer International Publishing; 2018:161-175. doi:10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Preprint | LibreCat-ID: 17714
Mohr F, Wever MD, Hüllermeier E. Automated machine learning service composition. 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer D, Hüllermeier E. Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning. 2018;107(5):903-941.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed