Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
5948 Publications
2019 | Conference Paper | LibreCat-ID: 15643
S. A. Opel, M. Schlichtig, and C. Schulte, “Developing Teaching Materials on Artificial Intelligence by Using a Simulation Game (Work in Progress),” in WiPSCE, 2019, p. 11:1-11:2.
LibreCat
2019 | Conference Paper | LibreCat-ID: 13259
W.-F. Chen, K. Al-Khatib, M. Hagen, H. Wachsmuth, and B. Stein, “Unraveling the Search Space of Abusive Language in Wikipedia with Dynamic Lexicon Acquisition,” in Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom, 2019, pp. 76–82.
LibreCat
| Download (ext.)
2019 | Conference Paper | LibreCat-ID: 13904 |

J. Blömer, J. Bobolz, D. P. Diemert, and F. Eidens, “Updatable Anonymous Credentials and Applications to Incentive Systems,” presented at the 26th ACM Conference on Computer and Communications Security, London, 2019, doi: 10.1145/3319535.3354223.
LibreCat
| Files available
| DOI
| Download (ext.)
2019 | Conference Paper | LibreCat-ID: 46343
C. Grimme, P. Kerschke, and H. Trautmann, “Multimodality in Multi-Objective Optimization — More Boon than Bane?,” in Proceedings of the 10$^th$ International Conference on Evolutionary Multi-Criterion Optimization (EMO), 2019, vol. 11411, pp. 126–138, doi: 10.1007/978-3-030-12598-1_11.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46345
P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated Algorithm Selection: Survey and Perspectives,” Evolutionary Computation (ECJ), vol. 27, no. 1, pp. 3–45, 2019, doi: 10.1162/evco_a_00242.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46344
M. Carnein and H. Trautmann, “Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms,” Business and Information Systems Engineering (BISE), vol. 61, no. 3, pp. 277–297, 2019.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46340
M. Carnein, L. Homann, H. Trautmann, and G. Vossen, “A Recommender System Based on Omni-Channel Customer Data,” in Proceedings of the 21$^st$ IEEE Conference on Business Informatics (CBI’ 19), 2019, pp. 65–74.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46341
M. Carnein and H. Trautmann, “Customer Segmentation Based on Transactional Data Using Stream Clustering,” in Proceedings of the 23$^rd$ Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’19), 2019, pp. 280–292.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46342
C. Grimme, P. Kerschke, M. T. M. Emmerich, M. Preuss, A. H. Deutz, and H. Trautmann, “Sliding to the Global Optimum: How to Benefit from Non-Global Optima in Multimodal Multi-Objective Optimization,” in AIP Conference Proceedings, 2019, pp. 020052-1-020052–4, doi: 10.1063/1.5090019.
LibreCat
| DOI
2019 | Book Chapter | LibreCat-ID: 46336
P. Kerschke and H. Trautmann, “Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco,” in Applications in Statistical Computing, N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Trautmann, and M. Vichi, Eds. Springer, 2019, pp. 93–123.
LibreCat
| DOI
2019 | Book | LibreCat-ID: 46335
H. Trautmann, Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Springer International Publishing, 2019.
LibreCat
2019 | Journal Article | LibreCat-ID: 46346
P. Kerschke and H. Trautmann, “Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning,” Evolutionary Computation (ECJ), vol. 27, no. 1, pp. 99–127, 2019, doi: 10.1162/evco_a_00236.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46347
P. Kerschke et al., “Search Dynamics on Multimodal Multi-Objective Problems,” Evolutionary Computation (ECJ), vol. 27, no. 4, pp. 577–609, 2019, doi: 10.1162/evco_a_00234.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48841
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, and H. Trautmann, “Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm,” in Evolutionary Multi-Criterion Optimization (EMO), 2019, pp. 516–528, doi: 10.1007/978-3-030-12598-1_41.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48842
J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and H. Trautmann, “Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators,” in Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2019, pp. 58–71, doi: 10.1145/3299904.3340307.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48843
J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 1443–1451, doi: 10.1145/3321707.3321792.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48840
J. Bossek, C. Grimme, and F. Neumann, “On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 516–523, doi: 10.1145/3321707.3321818.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48858
J. Bossek and C. Grimme, “Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems,” in Learning and Intelligent Optimization, 2019, pp. 184–198, doi: 10.1007/978-3-030-05348-2_17.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48870
J. Bossek and D. Sudholt, “Time Complexity Analysis of RLS and (1 + 1) EA for the Edge Coloring Problem,” in Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2019, pp. 102–115, doi: 10.1145/3299904.3340311.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48875
J. Bossek and H. Trautmann, “Multi-Objective Performance Measurement: Alternatives to PAR10 and Expected Running Time,” in Learning and Intelligent Optimization, 2019, pp. 215–219, doi: 10.1007/978-3-030-05348-2_19.
LibreCat
| DOI