Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
197 Publications
2020 | Conference Paper | LibreCat-ID: 46321
D. Assenmacher, L. Frischlich , H. Trautmann, C. Grimme, and L. Adam, “Inside the tool set of automation: Free social bot code revisited,” in Disinformation in open online media, 2020, pp. 101–114.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46326
M. Carnein, H. Trautmann, A. Bifet, and B. Pfahringer, “confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms,” in Proceedings of the 14$^th$ Learning and Intelligent Optimization Conference (LION 2020), 2020, pp. 80–95, doi: 10.1007/978-3-030-53552-0_10.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46327
C. Lena, L. Frischlich, H. Trautmann, and C. Grimme, “Automated detection of nostalgic text in the context of societal pessimism,” in Disinformation in open online media, 2020, pp. 48–58.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46329
D. M. Riehle, M. Niemann, J. Brunk, D. Assenmacher, H. Trautmann, and J. Becker, “Building an Integrated Comment Moderation System – Towards a Semi-automatic Moderation Tool,” in Social Computing and Social Media. Participation, User Experience, Consumer Experience, and Applications of Social Computing, 2020, pp. 71–86.
LibreCat
2020 | Journal Article | LibreCat-ID: 46333
D. Assenmacher, L. Clever, L. Frischlich, T. Quandt, H. Trautmann, and C. Grimme, “Demystifying Social Bots: On the Intelligence of Automated Social Media Actors,” Social Media + Society, vol. 6, no. 3, p. 2056305120939264, 2020, doi: 10.1177/2056305120939264.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46332
V. Steinhoff, P. Kerschke, P. Aspar, H. Trautmann, and C. Grimme, “Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent,” in Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), 2020, pp. 2445–2452, doi: 10.1109/SSCI47803.2020.9308259.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48847
J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “More Effective Randomized Search Heuristics for Graph Coloring through Dynamic Optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2020, pp. 1277–1285, doi: 10.1145/3377930.3390174.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48849
J. Bossek, C. Doerr, P. Kerschke, A. Neumann, and F. Neumann, “Evolving Sampling Strategies for One-Shot Optimization Tasks,” in Parallel Problem Solving from Nature (PPSN XVI), 2020, pp. 111–124, doi: 10.1007/978-3-030-58112-1_8.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48851
J. Bossek, K. Casel, P. Kerschke, and F. Neumann, “The Node Weight Dependent Traveling Salesperson Problem: Approximation Algorithms and Randomized Search Heuristics,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2020, pp. 1286–1294, doi: 10.1145/3377930.3390243.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48845
J. Bossek, C. Grimme, and H. Trautmann, “Dynamic Bi-Objective Routing of Multiple Vehicles,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2020, pp. 166–174, doi: 10.1145/3377930.3390146.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48844
J. Bossek, P. Kerschke, and H. Trautmann, “Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection,” in 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8, doi: 10.1109/CEC48606.2020.9185613.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48850
J. Bossek, C. Doerr, and P. Kerschke, “Initial Design Strategies and Their Effects on Sequential Model-Based Optimization: An Exploratory Case Study Based on BBOB,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2020, pp. 778–786, doi: 10.1145/3377930.3390155.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48852
J. Bossek, A. Neumann, and F. Neumann, “Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions,” in Parallel Problem Solving from Nature (PPSN XVI), 2020, pp. 346–359, doi: 10.1007/978-3-030-58112-1_24.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48846
J. Bossek, C. Grimme, G. Rudolph, and H. Trautmann, “Towards Decision Support in Dynamic Bi-Objective Vehicle Routing,” in 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8, doi: 10.1109/CEC48606.2020.9185778.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48879
A. V. Do, J. Bossek, A. Neumann, and F. Neumann, “Evolving Diverse Sets of Tours for the Travelling Salesperson Problem,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2020, pp. 681–689, doi: 10.1145/3377930.3389844.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48895
V. Roostapour, J. Bossek, and F. Neumann, “Runtime Analysis of Evolutionary Algorithms with Biased Mutation for the Multi-Objective Minimum Spanning Tree Problem,” in Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 551–559, doi: 10.1145/3377930.3390168.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48897
M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann, “Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem,” in Parallel Problem Solving from {Nature} (PPSN XVI), 2020, pp. 48–64, doi: 10.1007/978-3-030-58112-1_4.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 48848
J. Bossek, P. Kerschke, and H. Trautmann, “A Multi-Objective Perspective on Performance Assessment and Automated Selection of Single-Objective Optimization Algorithms,” Applied Soft Computing, vol. 88, no. C, 2020, doi: 10.1016/j.asoc.2019.105901.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 48836
T. Bartz-Beielstein et al., “Benchmarking in Optimization: Best Practice and Open Issues,” Corr, 2020.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46331
M. Seiler, H. Trautmann, and P. Kerschke, “Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8, doi: 10.1109/IJCNN48605.2020.9207338.
LibreCat
| DOI