Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
8 Publications
2024 | Journal Article | LibreCat-ID: 63256
Nikolić, V., & Winkler, M. (2024). <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si15.svg" display="inline" id="d1e25"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math> blow-up in the Jordan–Moore–Gibson–Thompson equation. Nonlinear Analysis, 247, Article 113600. https://doi.org/10.1016/j.na.2024.113600
LibreCat
| DOI
2022 | Journal Article | LibreCat-ID: 53325
Desvillettes, L., Laurençot, P., Trescases, A., & Winkler, M. (2022). Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing. Nonlinear Analysis, 226, Article 113153. https://doi.org/10.1016/j.na.2022.113153
LibreCat
| DOI
2022 | Journal Article | LibreCat-ID: 63268
Desvillettes, L., Laurençot, P., Trescases, A., & Winkler, M. (2022). Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing. Nonlinear Analysis, 226, Article 113153. https://doi.org/10.1016/j.na.2022.113153
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 63319
Tao, Y., & Winkler, M. (2021). The dampening role of large repulsive convection in a chemotaxis system modeling tumor angiogenesis. Nonlinear Analysis, 208, Article 112324. https://doi.org/10.1016/j.na.2021.112324
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63333
Tao, Y., & Winkler, M. (2020). A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy. Nonlinear Analysis, 198, Article 111870. https://doi.org/10.1016/j.na.2020.111870
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
Winkler, M. (2019). Instantaneous regularization of distributions from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si17.gif"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>⋆</mml:mo></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>in the one-dimensional parabolic Keller–Segel system. Nonlinear Analysis, 183, 102–116. https://doi.org/10.1016/j.na.2019.01.017
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 34667
Black, T. (2018). Global solvability of chemotaxis–fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions. Nonlinear Analysis, 180, 129–153. https://doi.org/10.1016/j.na.2018.10.003
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63382
Winkler, M., & Yokota, T. (2018). Stabilization in the logarithmic Keller–Segel system. Nonlinear Analysis, 170, 123–141. https://doi.org/10.1016/j.na.2018.01.002
LibreCat
| DOI