Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
10 Publications
2024 | Journal Article | LibreCat-ID: 54548
Prager RP, Trautmann H. Exploratory Landscape Analysis for Mixed-Variable Problems. IEEE Transactions on Evolutionary Computation. Published online 2024:1-1. doi:10.1109/TEVC.2024.3399560
LibreCat
| DOI
2024 | Conference Paper | LibreCat-ID: 56277
Kilsbach S, Michel N. Computer-Based Generation of Learner-Sensitive Feedback to Argumentative Learner Texts. In: Proceedings of the Tenth Conference of the International Society for the Study of Argumentation. ; 2024.
LibreCat
2023 | Book Chapter | LibreCat-ID: 52662
Nachtigall M, Schlichtig M, Bodden E. Evaluation of Usability Criteria Addressed by Static Analysis Tools on a Large Scale. In: Software Engineering 2023. Gesellschaft für Informatik e.V.; 2023:95–96.
LibreCat
| Download (ext.)
2023 | Conference Paper | LibreCat-ID: 52816
Gräßler I, Hieb M. Creating Synthetic Training Datasets for Inspection in Machine Vision Quality Gates in Manufacturing. In: Lectures. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany; 2023:253-524. doi:10.5162/smsi2023/d7.4
LibreCat
| DOI
2022 | Conference Paper | LibreCat-ID: 32410
Nachtigall M, Schlichtig M, Bodden E. A Large-Scale Study of Usability Criteria Addressed by Static Analysis Tools. In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM; 2022:532-543. doi:10.1145/3533767
LibreCat
| Files available
| DOI
2021 | Journal Article | LibreCat-ID: 21004
Wever MD, Tornede A, Mohr F, Hüllermeier E. AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence. Published online 2021:1-1. doi:10.1109/tpami.2021.3051276
LibreCat
| DOI
2021 | Book Chapter | LibreCat-ID: 48881
Heins J, Bossek J, Pohl J, Seiler M, Trautmann H, Kerschke P. On the Potential of Normalized TSP Features for Automated Algorithm Selection. In: Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. Association for Computing Machinery; 2021:1–15.
LibreCat
2020 | Conference Paper | LibreCat-ID: 48897
Seiler M, Pohl J, Bossek J, Kerschke P, Trautmann H. Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. In: Parallel Problem Solving from {Nature} (PPSN XVI). Springer-Verlag; 2020:48–64. doi:10.1007/978-3-030-58112-1_4
LibreCat
| DOI
2018 | Conference Paper | LibreCat-ID: 3852 |

Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: ICML 2018 AutoML Workshop. ; 2018.
LibreCat
| Files available
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 48884
Kerschke P, Kotthoff L, Bossek J, Hoos HH, Trautmann H. Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Computation. 2018;26(4):597–620. doi:10.1162/evco_a_00215
LibreCat
| DOI