Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
2372 Publications
2019 | Journal Article | LibreCat-ID: 63356
Tao, Y., & Winkler, M. (2019). Large time behavior in a forager–exploiter model with different taxis strategies for two groups in search of food. Mathematical Models and Methods in Applied Sciences, 29(11), 2151–2182. https://doi.org/10.1142/s021820251950043x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63352
Lankeit, J., & Winkler, M. (2019). Counterintuitive dependence of temporal asymptotics on initial decay in a nonlocal degenerate parabolic equation arising in game theory. Israel Journal of Mathematics, 233(1), 249–296. https://doi.org/10.1007/s11856-019-1900-8
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63358
Tao, Y., & Winkler, M. (2019). A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 18(4), 2047–2067. https://doi.org/10.3934/cpaa.2019092
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63357
Tao, Y., & Winkler, M. (2019). Global smooth solvability of a parabolic–elliptic nutrient taxis system in domains of arbitrary dimension. Journal of Differential Equations, 267(1), 388–406. https://doi.org/10.1016/j.jde.2019.01.014
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63353
Lankeit, J., & Winkler, M. (2019). Facing Low Regularity in Chemotaxis Systems. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 122(1), 35–64. https://doi.org/10.1365/s13291-019-00210-z
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
Krzyżanowski, P., Winkler, M., & Wrzosek, D. (2019). Migration-driven benefit in a two-species nutrient taxis system. Nonlinear Analysis: Real World Applications, 48, 94–116. https://doi.org/10.1016/j.nonrwa.2019.01.006
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63362
Winkler, M. (2019). Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 36(6), 1747–1790. https://doi.org/10.1016/j.anihpc.2019.02.004
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63363
Winkler, M. (2019). Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Mathematical Models and Methods in Applied Sciences, 29(03), 373–418. https://doi.org/10.1142/s021820251950012x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
Winkler, M. (2019). Instantaneous regularization of distributions from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si17.gif"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>⋆</mml:mo></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>in the one-dimensional parabolic Keller–Segel system. Nonlinear Analysis, 183, 102–116. https://doi.org/10.1016/j.na.2019.01.017
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63359
Wang, Y., Winkler, M., & Xiang, Z. (2019). The fast signal diffusion limit in Keller–Segel(-fluid) systems. Calculus of Variations and Partial Differential Equations, 58(6), Article 196. https://doi.org/10.1007/s00526-019-1656-3
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63364
Winkler, M. (2019). How strong singularities can be regularized by logistic degradation in the Keller–Segel system? Annali Di Matematica Pura Ed Applicata (1923 -), 198(5), 1615–1637. https://doi.org/10.1007/s10231-019-00834-z
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63367
Winkler, M. (2019). Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations? Nonlinear Differential Equations and Applications NoDEA, 26(6), Article 48. https://doi.org/10.1007/s00030-019-0600-8
LibreCat
| DOI