Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations

A. Riefer, M. Rohrmüller, M. Landmann, S. Sanna, E. Rauls, N.J. Vollmers, R. Hölscher, M. Witte, Y. Li, U. Gerstmann, A. Schindlmayr, W.G. Schmidt, in: W.E. Nagel, D.H. Kröner, M.M. Resch (Eds.), High Performance Computing in Science and Engineering ‘13, Springer, Cham, 2013, pp. 93–104.

Download
Restricted Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations 517.82 KB
Book Chapter | Published | English
Author
Riefer, Arthur; Rohrmüller, Martin; Landmann, Marc; Sanna, Simone; Rauls, Eva; Vollmers, Nora Jenny; Hölscher, Rebecca; Witte, Matthias; Li, Yanlu; Gerstmann, UweLibreCat; Schindlmayr, ArnoLibreCat ; Schmidt, Wolf GeroLibreCat
All
Book Editor
Nagel, Wolfgang E.; Kröner, Dietmar H.; Resch, Michael M.
Abstract
The frequency-dependent dielectric function and the second-order polarizability tensor of ferroelectric LiNbO3 are calculated from first principles. The calculations are based on the electronic structure obtained from density-functional theory. The subsequent application of the GW approximation to account for quasiparticle effects and the solution of the Bethe–Salpeter equation yield a dielectric function for the stoichiometric material that slightly overestimates the absorption onset and the oscillator strength in comparison with experimental measurements. Calculations at the level of the independent-particle approximation indicate that these deficiencies are at least partially related to the neglect of intrinsic defects typical for the congruent material. The second-order polarizability calculated within the independent-particle approximation predicts strong nonlinear coefficients for photon energies above 1.5 eV. The comparison with measured data suggests that self-energy effects improve the agreement between experiment and theory. The intrinsic defects of congruent samples reduce the optical nonlinearities, in particular for the 21 and 31 tensor components, further improving the agreement with measured data.
Publishing Year
Book Title
High Performance Computing in Science and Engineering ‘13
Series Title / Volume
Transactions of the High Performance Computing Center, Stuttgart
Page
93-104
LibreCat-ID

Cite this

Riefer A, Rohrmüller M, Landmann M, et al. Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations. In: Nagel WE, Kröner DH, Resch MM, eds. High Performance Computing in Science and Engineering ‘13. Transactions of the High Performance Computing Center, Stuttgart. Cham: Springer; 2013:93-104. doi:10.1007/978-3-319-02165-2_8
Riefer, A., Rohrmüller, M., Landmann, M., Sanna, S., Rauls, E., Vollmers, N. J., … Schmidt, W. G. (2013). Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ‘13 (pp. 93–104). Cham: Springer. https://doi.org/10.1007/978-3-319-02165-2_8
@inbook{Riefer_Rohrmüller_Landmann_Sanna_Rauls_Vollmers_Hölscher_Witte_Li_Gerstmann_et al._2013, place={Cham}, series={Transactions of the High Performance Computing Center, Stuttgart}, title={Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations}, DOI={10.1007/978-3-319-02165-2_8}, booktitle={High Performance Computing in Science and Engineering ‘13}, publisher={Springer}, author={Riefer, Arthur and Rohrmüller, Martin and Landmann, Marc and Sanna, Simone and Rauls, Eva and Vollmers, Nora Jenny and Hölscher, Rebecca and Witte, Matthias and Li, Yanlu and Gerstmann, Uwe and et al.}, editor={Nagel, Wolfgang E. and Kröner, Dietmar H. and Resch, Michael M.Editors}, year={2013}, pages={93–104}, collection={Transactions of the High Performance Computing Center, Stuttgart} }
Riefer, Arthur, Martin Rohrmüller, Marc Landmann, Simone Sanna, Eva Rauls, Nora Jenny Vollmers, Rebecca Hölscher, et al. “Lithium Niobate Dielectric Function and Second-Order Polarizability Tensor from Massively Parallel Ab Initio Calculations.” In High Performance Computing in Science and Engineering ‘13, edited by Wolfgang E. Nagel, Dietmar H. Kröner, and Michael M. Resch, 93–104. Transactions of the High Performance Computing Center, Stuttgart. Cham: Springer, 2013. https://doi.org/10.1007/978-3-319-02165-2_8.
A. Riefer et al., “Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations,” in High Performance Computing in Science and Engineering ‘13, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds. Cham: Springer, 2013, pp. 93–104.
Riefer, Arthur, et al. “Lithium Niobate Dielectric Function and Second-Order Polarizability Tensor from Massively Parallel Ab Initio Calculations.” High Performance Computing in Science and Engineering ‘13, edited by Wolfgang E. Nagel et al., Springer, 2013, pp. 93–104, doi:10.1007/978-3-319-02165-2_8.
Main File(s)
File Name
Riefer2013_Chapter_LithiumNiobateDielectricFuncti.pdf 517.82 KB
File Title
Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations
Description
© 2013 Springer International Publishing, Switzerland
Access Level
Restricted Closed Access
Last Uploaded
2020-08-30T14:57:36Z


Export

Marked Publications

Open Data LibreCat

Web of Science

View record in Web of Science®

Search this title in

Google Scholar
ISBN Search