Discrete variational Lie group formulation of geometrically exact beam dynamics
F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blöbaum, T.S. Ratiu, Y. Weinand, Numerische Mathematik 130(1) (2015) 73–123.
Download
No fulltext has been uploaded.
Journal Article
| English
Author
Demoures, F.;
Gay-Balmaz, F.;
Leyendecker, S.;
Ober-Blöbaum, SinaLibreCat;
Ratiu, T.S.;
Weinand, Y.
Publishing Year
Journal Title
Numerische Mathematik
Volume
130(1)
Page
73-123
ISSN
LibreCat-ID
Cite this
Demoures F, Gay-Balmaz F, Leyendecker S, Ober-Blöbaum S, Ratiu TS, Weinand Y. Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische Mathematik. 2015;130(1):73-123. doi:10.1007/s00211-014-0659-4
Demoures, F., Gay-Balmaz, F., Leyendecker, S., Ober-Blöbaum, S., Ratiu, T. S., & Weinand, Y. (2015). Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische Mathematik, 130(1), 73–123. https://doi.org/10.1007/s00211-014-0659-4
@article{Demoures_Gay-Balmaz_Leyendecker_Ober-Blöbaum_Ratiu_Weinand_2015, title={Discrete variational Lie group formulation of geometrically exact beam dynamics}, volume={130(1)}, DOI={10.1007/s00211-014-0659-4}, journal={Numerische Mathematik}, publisher={Springer Berlin Heidelberg}, author={Demoures, F. and Gay-Balmaz, F. and Leyendecker, S. and Ober-Blöbaum, Sina and Ratiu, T.S. and Weinand, Y.}, year={2015}, pages={73–123} }
Demoures, F., F. Gay-Balmaz, S. Leyendecker, Sina Ober-Blöbaum, T.S. Ratiu, and Y. Weinand. “Discrete Variational Lie Group Formulation of Geometrically Exact Beam Dynamics.” Numerische Mathematik 130(1) (2015): 73–123. https://doi.org/10.1007/s00211-014-0659-4.
F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blöbaum, T. S. Ratiu, and Y. Weinand, “Discrete variational Lie group formulation of geometrically exact beam dynamics,” Numerische Mathematik, vol. 130(1), pp. 73–123, 2015, doi: 10.1007/s00211-014-0659-4.
Demoures, F., et al. “Discrete Variational Lie Group Formulation of Geometrically Exact Beam Dynamics.” Numerische Mathematik, vol. 130(1), Springer Berlin Heidelberg, 2015, pp. 73–123, doi:10.1007/s00211-014-0659-4.