Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints
T. Wenger, S. Ober-Blöbaum, S. Leyendecker, Advances in Computational Mathematics 43(5) (2017) 1163–1195.
Download
No fulltext has been uploaded.
Journal Article
| English
Author
Wenger, T.;
Ober-Blöbaum, SinaLibreCat;
Leyendecker, S.
Publishing Year
Journal Title
Advances in Computational Mathematics
Volume
43(5)
Page
1163-1195
LibreCat-ID
Cite this
Wenger T, Ober-Blöbaum S, Leyendecker S. Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints. Advances in Computational Mathematics. 2017;43(5):1163-1195. doi:10.1007/s10444-017-9520-5
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2017). Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints. Advances in Computational Mathematics, 43(5), 1163–1195. https://doi.org/10.1007/s10444-017-9520-5
@article{Wenger_Ober-Blöbaum_Leyendecker_2017, title={Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints}, volume={43(5)}, DOI={10.1007/s10444-017-9520-5}, journal={Advances in Computational Mathematics}, author={Wenger, T. and Ober-Blöbaum, Sina and Leyendecker, S.}, year={2017}, pages={1163–1195} }
Wenger, T., Sina Ober-Blöbaum, and S. Leyendecker. “Construction and Analysis of Higher Order Variational Integrators for Dynamical Systems with Holonomic Constraints.” Advances in Computational Mathematics 43(5) (2017): 1163–95. https://doi.org/10.1007/s10444-017-9520-5.
T. Wenger, S. Ober-Blöbaum, and S. Leyendecker, “Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints,” Advances in Computational Mathematics, vol. 43(5), pp. 1163–1195, 2017, doi: 10.1007/s10444-017-9520-5.
Wenger, T., et al. “Construction and Analysis of Higher Order Variational Integrators for Dynamical Systems with Holonomic Constraints.” Advances in Computational Mathematics, vol. 43(5), 2017, pp. 1163–95, doi:10.1007/s10444-017-9520-5.