Efficient time stepping for numerical integration using reinforcement learning

M. Dellnitz, E. Hüllermeier, M. Lücke, S. Ober-Blöbaum, C. Offen, S. Peitz, K. Pfannschmidt, SIAM Journal on Scientific Computing 45 (2023) A579–A595.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
Many problems in science and engineering require an efficient numerical approximation of integrals or solutions to differential equations. For systems with rapidly changing dynamics, an equidistant discretization is often inadvisable as it results in prohibitively large errors or computational effort. To this end, adaptive schemes, such as solvers based on Runge–Kutta pairs, have been developed which adapt the step size based on local error estimations at each step. While the classical schemes apply very generally and are highly efficient on regular systems, they can behave suboptimally when an inefficient step rejection mechanism is triggered by structurally complex systems such as chaotic systems. To overcome these issues, we propose a method to tailor numerical schemes to the problem class at hand. This is achieved by combining simple, classical quadrature rules or ODE solvers with data-driven time-stepping controllers. Compared with learning solution operators to ODEs directly, it generalizes better to unseen initial data as our approach employs classical numerical schemes as base methods. At the same time it can make use of identified structures of a problem class and, therefore, outperforms state-of-the-art adaptive schemes. Several examples demonstrate superior efficiency. Source code is available at https://github.com/lueckem/quadrature-ML.
Publishing Year
Journal Title
SIAM Journal on Scientific Computing
Volume
45
Issue
2
Page
A579-A595
LibreCat-ID

Cite this

Dellnitz M, Hüllermeier E, Lücke M, et al. Efficient time stepping for numerical integration using reinforcement  learning. SIAM Journal on Scientific Computing. 2023;45(2):A579-A595. doi:10.1137/21M1412682
Dellnitz, M., Hüllermeier, E., Lücke, M., Ober-Blöbaum, S., Offen, C., Peitz, S., & Pfannschmidt, K. (2023). Efficient time stepping for numerical integration using reinforcement  learning. SIAM Journal on Scientific Computing, 45(2), A579–A595. https://doi.org/10.1137/21M1412682
@article{Dellnitz_Hüllermeier_Lücke_Ober-Blöbaum_Offen_Peitz_Pfannschmidt_2023, title={Efficient time stepping for numerical integration using reinforcement  learning}, volume={45}, DOI={10.1137/21M1412682}, number={2}, journal={SIAM Journal on Scientific Computing}, author={Dellnitz, Michael and Hüllermeier, Eyke and Lücke, Marvin and Ober-Blöbaum, Sina and Offen, Christian and Peitz, Sebastian and Pfannschmidt, Karlson}, year={2023}, pages={A579–A595} }
Dellnitz, Michael, Eyke Hüllermeier, Marvin Lücke, Sina Ober-Blöbaum, Christian Offen, Sebastian Peitz, and Karlson Pfannschmidt. “Efficient Time Stepping for Numerical Integration Using Reinforcement  Learning.” SIAM Journal on Scientific Computing 45, no. 2 (2023): A579–95. https://doi.org/10.1137/21M1412682.
M. Dellnitz et al., “Efficient time stepping for numerical integration using reinforcement  learning,” SIAM Journal on Scientific Computing, vol. 45, no. 2, pp. A579–A595, 2023, doi: 10.1137/21M1412682.
Dellnitz, Michael, et al. “Efficient Time Stepping for Numerical Integration Using Reinforcement  Learning.” SIAM Journal on Scientific Computing, vol. 45, no. 2, 2023, pp. A579–95, doi:10.1137/21M1412682.

Link(s) to Main File(s)
Access Level
Restricted Closed Access
Software:
Description
GitHub

Export

Marked Publications

Open Data LibreCat

Sources

arXiv arXiv:2104.03562

Search this title in

Google Scholar