Asynchronous variational Lie group integration for geometrically exact beam dynamics
F. Demoures, F. Gay-Balmaz, T. Leitz, S. Leyendecker, S. Ober-Blöbaum, T.S. Ratiu, in: Proceedings of Applied Mathematics and Mechanics, 2013, pp. 45–46.
Download
No fulltext has been uploaded.
Conference Paper
| English
Author
Demoures, F. ;
Gay-Balmaz, F. ;
Leitz, T.;
Leyendecker, S. ;
Ober-Blöbaum, SinaLibreCat;
Ratiu, T.S.
Department
Publishing Year
Proceedings Title
Proceedings of Applied Mathematics and Mechanics
Volume
13(1)
Page
45-46
Conference Date
2013-07-01 – 2013-07-04
LibreCat-ID
Cite this
Demoures F, Gay-Balmaz F, Leitz T, Leyendecker S, Ober-Blöbaum S, Ratiu TS. Asynchronous variational Lie group integration for geometrically exact beam dynamics. In: Proceedings of Applied Mathematics and Mechanics. Vol 13(1). ; 2013:45-46.
Demoures, F., Gay-Balmaz, F., Leitz, T., Leyendecker, S., Ober-Blöbaum, S., & Ratiu, T. S. (2013). Asynchronous variational Lie group integration for geometrically exact beam dynamics. Proceedings of Applied Mathematics and Mechanics, 13(1), 45–46.
@inproceedings{Demoures_Gay-Balmaz_Leitz_Leyendecker_Ober-Blöbaum_Ratiu_2013, title={Asynchronous variational Lie group integration for geometrically exact beam dynamics}, volume={13(1)}, booktitle={Proceedings of Applied Mathematics and Mechanics}, author={Demoures, F. and Gay-Balmaz, F. and Leitz, T. and Leyendecker, S. and Ober-Blöbaum, Sina and Ratiu, T.S. }, year={2013}, pages={45–46} }
Demoures, F. , F. Gay-Balmaz, T. Leitz, S. Leyendecker, Sina Ober-Blöbaum, and T.S. Ratiu. “Asynchronous Variational Lie Group Integration for Geometrically Exact Beam Dynamics.” In Proceedings of Applied Mathematics and Mechanics, 13(1):45–46, 2013.
F. Demoures, F. Gay-Balmaz, T. Leitz, S. Leyendecker, S. Ober-Blöbaum, and T. S. Ratiu, “Asynchronous variational Lie group integration for geometrically exact beam dynamics,” in Proceedings of Applied Mathematics and Mechanics, 2013, vol. 13(1), pp. 45–46.
Demoures, F., et al. “Asynchronous Variational Lie Group Integration for Geometrically Exact Beam Dynamics.” Proceedings of Applied Mathematics and Mechanics, vol. 13(1), 2013, pp. 45–46.