LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs
D. Urbaneck, P. Rehlaender, J. Böcker, F. Schafmeister, in: 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021.
Download
No fulltext has been uploaded.
Conference Paper
| Published
| English
Author
Abstract
LLC resonant converters typically employ power
MOSFETs in their inverter stage. The generally weak reverse
recovery behaviour of the intrinsic body diodes of those
MOSFETs causes significant turn-on losses when being forced
to hard commutations. Continuous operation in this way will
lead to self-destruction of the transistors. Consequently,
zero-voltage switching (ZVS) is essential in a MOSFET-based
inverter stage. To ensure ZVS, the LLC converter is operated in
the inductive region. On the contrary, IGBTs show dominant
turn-off losses and are therefore conventionally not applied in
LLC converters typically requiring high switching frequencies
to achieve low output voltages. However, if the LLC converter
is intentionally designed for capacitive operation, zero-current
switching (ZCS) is enabled and thus robust and cost-efficient
IGBTs can be applied in the inverter stage. The aim of this work
is to investigate the use IGBTs in the inverter of an LLC
converter. The theory behind the capacitive operated LLC is
derived using a switched simulation model and compared with
the fundamental harmonic approximation (FHA). The results
prove FHA to be useless for practical converter design. Instead,
a stress value analysis based on switched model simulations is
proposed to the design a capacitive operated LLC utilizing ZCS.
A 2 kW prototype for on-board EV applications was built to
verify the theory and design approach. The prototype confirms
the derived theory and thus the deployment of IGBTs in the
inverter stage of LLC resonant converters. Synchronous
rectification turns out to require a specific control solution, but
if given the resulting efficiency in the most critical operation
point exceeds the value of a MOSFET-based (inductive
operated) LLC-design of an identical application. Therefore,
this concept should be further developed.
Publishing Year
Proceedings Title
2021 IEEE Applied Power Electronics Conference and Exposition (APEC)
Conference
Applied Power Electronics Conference (APEC)
Conference Location
Arizona
Conference Date
2021-06-14 – 2021-06-17
LibreCat-ID
Cite this
Urbaneck D, Rehlaender P, Böcker J, Schafmeister F. LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs. In: 2021 IEEE Applied Power Electronics Conference and Exposition (APEC). ; 2021.
Urbaneck, D., Rehlaender, P., Böcker, J., & Schafmeister, F. (2021). LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC). Applied Power Electronics Conference (APEC), Arizona.
@inproceedings{Urbaneck_Rehlaender_Böcker_Schafmeister_2021, title={LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs}, booktitle={2021 IEEE Applied Power Electronics Conference and Exposition (APEC)}, author={Urbaneck, Daniel and Rehlaender, Philipp and Böcker, Joachim and Schafmeister, Frank}, year={2021} }
Urbaneck, Daniel, Philipp Rehlaender, Joachim Böcker, and Frank Schafmeister. “LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 KW DC-DC Converter for EVs.” In 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021.
D. Urbaneck, P. Rehlaender, J. Böcker, and F. Schafmeister, “LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs,” presented at the Applied Power Electronics Conference (APEC), Arizona, 2021.
Urbaneck, Daniel, et al. “LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 KW DC-DC Converter for EVs.” 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021.
Link(s) to Main File(s)
Access Level
Closed Access