Algorithm Selection on a Meta Level
A. Tornede, L. Gehring, T. Tornede, M.D. Wever, E. Hüllermeier, Machine Learning (2022).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Department
Project
Abstract
The problem of selecting an algorithm that appears most suitable for a
specific instance of an algorithmic problem class, such as the Boolean
satisfiability problem, is called instance-specific algorithm selection. Over
the past decade, the problem has received considerable attention, resulting in
a number of different methods for algorithm selection. Although most of these
methods are based on machine learning, surprisingly little work has been done
on meta learning, that is, on taking advantage of the complementarity of
existing algorithm selection methods in order to combine them into a single
superior algorithm selector. In this paper, we introduce the problem of meta
algorithm selection, which essentially asks for the best way to combine a given
set of algorithm selectors. We present a general methodological framework for
meta algorithm selection as well as several concrete learning methods as
instantiations of this framework, essentially combining ideas of meta learning
and ensemble learning. In an extensive experimental evaluation, we demonstrate
that ensembles of algorithm selectors can significantly outperform single
algorithm selectors and have the potential to form the new state of the art in
algorithm selection.
Publishing Year
Journal Title
Machine Learning
LibreCat-ID
Cite this
Tornede A, Gehring L, Tornede T, Wever MD, Hüllermeier E. Algorithm Selection on a Meta Level. Machine Learning. Published online 2022.
Tornede, A., Gehring, L., Tornede, T., Wever, M. D., & Hüllermeier, E. (2022). Algorithm Selection on a Meta Level. In Machine Learning.
@article{Tornede_Gehring_Tornede_Wever_Hüllermeier_2022, title={Algorithm Selection on a Meta Level}, journal={Machine Learning}, author={Tornede, Alexander and Gehring, Lukas and Tornede, Tanja and Wever, Marcel Dominik and Hüllermeier, Eyke}, year={2022} }
Tornede, Alexander, Lukas Gehring, Tanja Tornede, Marcel Dominik Wever, and Eyke Hüllermeier. “Algorithm Selection on a Meta Level.” Machine Learning, 2022.
A. Tornede, L. Gehring, T. Tornede, M. D. Wever, and E. Hüllermeier, “Algorithm Selection on a Meta Level,” Machine Learning. 2022.
Tornede, Alexander, et al. “Algorithm Selection on a Meta Level.” Machine Learning, 2022.