Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces

M. Kolb, T. Weich, L.L. Wolf, ArXiv:1909.06183 (2019).

Download
No fulltext has been uploaded.
Preprint | English
Department
Abstract
The kinetic Brownian motion on the sphere bundle of a Riemannian manifold $M$ is a stochastic process that models a random perturbation of the geodesic flow. If $M$ is a orientable compact constant negatively curved surface, we show that in the limit of infinitely large perturbation the $L^2$-spectrum of the infinitesimal generator of a time rescaled version of the process converges to the Laplace spectrum of the base manifold. In addition, we give explicit error estimates for the convergence to equilibrium. The proofs are based on noncommutative harmonic analysis of $SL_2(\mathbb{R})$.
Publishing Year
Journal Title
arXiv:1909.06183
LibreCat-ID

Cite this

Kolb M, Weich T, Wolf LL. Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces. arXiv:190906183. Published online 2019.
Kolb, M., Weich, T., & Wolf, L. L. (2019). Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces. In arXiv:1909.06183.
@article{Kolb_Weich_Wolf_2019, title={Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces}, journal={arXiv:1909.06183}, author={Kolb, Martin and Weich, Tobias and Wolf, Lasse Lennart}, year={2019} }
Kolb, Martin, Tobias Weich, and Lasse Lennart Wolf. “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces.” ArXiv:1909.06183, 2019.
M. Kolb, T. Weich, and L. L. Wolf, “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces,” arXiv:1909.06183. 2019.
Kolb, Martin, et al. “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces.” ArXiv:1909.06183, 2019.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 1909.06183

Search this title in

Google Scholar