Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature
M. Kolb, T. Weich, L.L. Wolf, ArXiv:2011.06434 (2020).
Download
No fulltext has been uploaded.
Preprint
Author
Kolb, Martin;
Weich, Tobias;
Wolf, Lasse Lennart
Abstract
The kinetic Brownian motion on the sphere bundle of a Riemannian manifold $M$
is a stochastic process that models a random perturbation of the geodesic flow.
If $M$ is a orientable compact constantly curved surface, we show that in the
limit of infinitely large perturbation the $L^2$-spectrum of the infinitesimal
generator of a time rescaled version of the process converges to the Laplace
spectrum of the base manifold.
Publishing Year
Journal Title
arXiv:2011.06434
LibreCat-ID
Cite this
Kolb M, Weich T, Wolf LL. Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. arXiv:201106434. Published online 2020.
Kolb, M., Weich, T., & Wolf, L. L. (2020). Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. In arXiv:2011.06434.
@article{Kolb_Weich_Wolf_2020, title={Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature}, journal={arXiv:2011.06434}, author={Kolb, Martin and Weich, Tobias and Wolf, Lasse Lennart}, year={2020} }
Kolb, Martin, Tobias Weich, and Lasse Lennart Wolf. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” ArXiv:2011.06434, 2020.
M. Kolb, T. Weich, and L. L. Wolf, “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature,” arXiv:2011.06434. 2020.
Kolb, Martin, et al. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” ArXiv:2011.06434, 2020.