L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data
K. Hesse, Q.T. Le Gia, Journal of Computational and Applied Mathematics 408 (2022).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Hesse, KerstinLibreCat ;
Le Gia, Quoc Thong
Department
Keywords
Publishing Year
Journal Title
Journal of Computational and Applied Mathematics
Volume
408
Article Number
114118
ISSN
LibreCat-ID
Cite this
Hesse K, Le Gia QT. L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics. 2022;408. doi:10.1016/j.cam.2022.114118
Hesse, K., & Le Gia, Q. T. (2022). L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics, 408, Article 114118. https://doi.org/10.1016/j.cam.2022.114118
@article{Hesse_Le Gia_2022, title={L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data}, volume={408}, DOI={10.1016/j.cam.2022.114118}, number={114118}, journal={Journal of Computational and Applied Mathematics}, publisher={Elsevier BV}, author={Hesse, Kerstin and Le Gia, Quoc Thong}, year={2022} }
Hesse, Kerstin, and Quoc Thong Le Gia. “L_2 Error Estimates for Polynomial Discrete Penalized Least-Squares Approximation on the Sphere from Noisy Data.” Journal of Computational and Applied Mathematics 408 (2022). https://doi.org/10.1016/j.cam.2022.114118.
K. Hesse and Q. T. Le Gia, “L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data,” Journal of Computational and Applied Mathematics, vol. 408, Art. no. 114118, 2022, doi: 10.1016/j.cam.2022.114118.
Hesse, Kerstin, and Quoc Thong Le Gia. “L_2 Error Estimates for Polynomial Discrete Penalized Least-Squares Approximation on the Sphere from Noisy Data.” Journal of Computational and Applied Mathematics, vol. 408, 114118, Elsevier BV, 2022, doi:10.1016/j.cam.2022.114118.