Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators
A. Agne, H. Hangmann, M. Happe, M. Platzner, C. Plessl, Microprocessors and Microsystems 38 (2014) 911–919.
Download
363-plessl13_micpro.pdf
1.50 MB
Journal Article
| English
Author
Project
Abstract
Due to the continuously shrinking device structures and increasing densities of FPGAs, thermal aspects have become the new focus for many research projects over the last years. Most researchers rely on temperature simulations to evaluate their novel thermal management techniques. However, these temperature simulations require a high computational effort if a detailed thermal model is used and their accuracies are often unclear. In contrast to simulations, the use of synthetic heat sources allows for experimental evaluation of temperature management methods. In this paper we investigate the creation of significant rises in temperature on modern FPGAs to enable future evaluation of thermal management techniques based on experiments. To that end, we have developed seven different heat-generating cores that use different subsets of FPGA resources. Our experimental results show that, according to external temperature probes connected to the FPGA’s heat sink, we can increase the temperature by an average of 81 !C. This corresponds to an average increase of 156.3 !C as measured by the built-in thermal diodes of our Virtex-5 FPGAs in less than 30 min by only utilizing about 21 percent of the slices.
Publishing Year
Journal Title
Microprocessors and Microsystems
Volume
38
Issue
8, Part B
Page
911-919
LibreCat-ID
Cite this
Agne A, Hangmann H, Happe M, Platzner M, Plessl C. Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators. Microprocessors and Microsystems. 2014;38(8, Part B):911-919. doi:10.1016/j.micpro.2013.12.001
Agne, A., Hangmann, H., Happe, M., Platzner, M., & Plessl, C. (2014). Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators. Microprocessors and Microsystems, 38(8, Part B), 911–919. https://doi.org/10.1016/j.micpro.2013.12.001
@article{Agne_Hangmann_Happe_Platzner_Plessl_2014, title={Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators}, volume={38}, DOI={10.1016/j.micpro.2013.12.001}, number={8, Part B}, journal={Microprocessors and Microsystems}, publisher={Elsevier}, author={Agne, Andreas and Hangmann, Hendrik and Happe, Markus and Platzner, Marco and Plessl, Christian}, year={2014}, pages={911–919} }
Agne, Andreas, Hendrik Hangmann, Markus Happe, Marco Platzner, and Christian Plessl. “Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators.” Microprocessors and Microsystems 38, no. 8, Part B (2014): 911–19. https://doi.org/10.1016/j.micpro.2013.12.001.
A. Agne, H. Hangmann, M. Happe, M. Platzner, and C. Plessl, “Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators,” Microprocessors and Microsystems, vol. 38, no. 8, Part B, pp. 911–919, 2014, doi: 10.1016/j.micpro.2013.12.001.
Agne, Andreas, et al. “Seven Recipes for Setting Your FPGA on Fire – A Cookbook on Heat Generators.” Microprocessors and Microsystems, vol. 38, no. 8, Part B, Elsevier, 2014, pp. 911–19, doi:10.1016/j.micpro.2013.12.001.
Main File(s)
File Name
363-plessl13_micpro.pdf
1.50 MB
Access Level
Closed Access
Last Uploaded
2018-03-20T07:20:31Z