Positivity of Dunkl's intertwining operator via the trigonometric setting

M. Rösler, M. Voit, International Mathematics Research Notices (2004) 3379–3389.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Rösler, MargitLibreCat; Voit, Michael
Abstract
In this note, a new proof for the positivity of Dunkl's intertwining operator in the crystallographic case is given. It is based on an asymptotic relationship between the Opdam-Cherednik kernel and the Dunkl kernel as recently observed by M. de Jeu, and on positivity results of S. Sahi for the Heckman-Opdam polynomials and their non-symmetric counterparts.
Publishing Year
Journal Title
International Mathematics Research Notices
Issue
63
Page
3379–3389
LibreCat-ID

Cite this

Rösler M, Voit M. Positivity of Dunkl’s intertwining operator via the trigonometric setting. International Mathematics Research Notices. 2004;(63):3379–3389. doi:10.48550/ARXIV.MATH/0405368
Rösler, M., & Voit, M. (2004). Positivity of Dunkl’s intertwining operator via the trigonometric setting. International Mathematics Research Notices, 63, 3379–3389. https://doi.org/10.48550/ARXIV.MATH/0405368
@article{Rösler_Voit_2004, title={Positivity of Dunkl’s intertwining operator via the trigonometric setting}, DOI={10.48550/ARXIV.MATH/0405368}, number={63}, journal={International Mathematics Research Notices}, publisher={Oxford University Press}, author={Rösler, Margit and Voit, Michael}, year={2004}, pages={3379–3389} }
Rösler, Margit, and Michael Voit. “Positivity of Dunkl’s Intertwining Operator via the Trigonometric Setting.” International Mathematics Research Notices, no. 63 (2004): 3379–3389. https://doi.org/10.48550/ARXIV.MATH/0405368.
M. Rösler and M. Voit, “Positivity of Dunkl’s intertwining operator via the trigonometric setting,” International Mathematics Research Notices, no. 63, pp. 3379–3389, 2004, doi: 10.48550/ARXIV.MATH/0405368.
Rösler, Margit, and Michael Voit. “Positivity of Dunkl’s Intertwining Operator via the Trigonometric Setting.” International Mathematics Research Notices, no. 63, Oxford University Press, 2004, pp. 3379–3389, doi:10.48550/ARXIV.MATH/0405368.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar