Inverse procedure for the identification of piezoelectric material parameters supported by dense neural networks
L. Claes, L. Meihost, B. Jurgelucks, Inverse Procedure for the Identification of Piezoelectric Material Parameters Supported by Dense Neural Networks, GAMM Annual Meeting, Dresden, 2023.
Download
No fulltext has been uploaded.
Misc
| English
Author
Department
Project
ChaMP: Ein modellbasiertes Messverfahren zur Charakterisierung der frequenzabhängigen Materialeigenschaften von Piezokeramiken unter Verwendung eines einzelnen Probekörperindividuums
PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing
NEPTUN: Modellbasierte Bestimmung nichtlinearer Eigenschaften von Piezokeramiken für Leistungsschallanwendungen
PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing
NEPTUN: Modellbasierte Bestimmung nichtlinearer Eigenschaften von Piezokeramiken für Leistungsschallanwendungen
Publishing Year
LibreCat-ID
Cite this
Claes L, Meihost L, Jurgelucks B. Inverse Procedure for the Identification of Piezoelectric Material Parameters Supported by Dense Neural Networks.; 2023.
Claes, L., Meihost, L., & Jurgelucks, B. (2023). Inverse procedure for the identification of piezoelectric material parameters supported by dense neural networks.
@book{Claes_Meihost_Jurgelucks_2023, place={GAMM Annual Meeting, Dresden}, title={Inverse procedure for the identification of piezoelectric material parameters supported by dense neural networks}, author={Claes, Leander and Meihost, Lars and Jurgelucks, Benjamin}, year={2023} }
Claes, Leander, Lars Meihost, and Benjamin Jurgelucks. Inverse Procedure for the Identification of Piezoelectric Material Parameters Supported by Dense Neural Networks. GAMM Annual Meeting, Dresden, 2023.
L. Claes, L. Meihost, and B. Jurgelucks, Inverse procedure for the identification of piezoelectric material parameters supported by dense neural networks. GAMM Annual Meeting, Dresden, 2023.
Claes, Leander, et al. Inverse Procedure for the Identification of Piezoelectric Material Parameters Supported by Dense Neural Networks. 2023.