Temperedness of locally symmetric spaces: The product case

T. Weich, L.L. Wolf, Geom Dedicata 218 (2024).

Download
No fulltext has been uploaded.
Journal Article | English
Abstract
Let $X=X_1\times X_2$ be a product of two rank one symmetric spaces of non-compact type and $\Gamma$ a torsion-free discrete subgroup in $G_1\times G_2$. We show that the spectrum of $\Gamma \backslash X$ is related to the asymptotic growth of $\Gamma$ in the two direction defined by the two factors. We obtain that $L^2(\Gamma \backslash G)$ is tempered for large class of $\Gamma$.
Publishing Year
Journal Title
Geom Dedicata
Volume
218
Article Number
76
LibreCat-ID

Cite this

Weich T, Wolf LL. Temperedness of locally symmetric spaces: The product case. Geom Dedicata. 2024;218. doi:https://doi.org/10.1007/s10711-024-00904-4
Weich, T., & Wolf, L. L. (2024). Temperedness of locally symmetric spaces: The product case. Geom Dedicata, 218, Article 76. https://doi.org/10.1007/s10711-024-00904-4
@article{Weich_Wolf_2024, title={Temperedness of locally symmetric spaces: The product case}, volume={218}, DOI={https://doi.org/10.1007/s10711-024-00904-4}, number={76}, journal={Geom Dedicata}, author={Weich, Tobias and Wolf, Lasse Lennart}, year={2024} }
Weich, Tobias, and Lasse Lennart Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” Geom Dedicata 218 (2024). https://doi.org/10.1007/s10711-024-00904-4.
T. Weich and L. L. Wolf, “Temperedness of locally symmetric spaces: The product case,” Geom Dedicata, vol. 218, Art. no. 76, 2024, doi: https://doi.org/10.1007/s10711-024-00904-4.
Weich, Tobias, and Lasse Lennart Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” Geom Dedicata, vol. 218, 76, 2024, doi:https://doi.org/10.1007/s10711-024-00904-4.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2304.09573

Search this title in

Google Scholar