Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion

D. Milaege, N. Eschemann, K.-P. Hoyer, M. Schaper, Crystals 14 (2024).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
<jats:p>Through tailoring the geometry and design of biomaterials, additive manufacturing is revolutionizing the production of metallic patient-specific implants, e.g., the Ti-6Al-7Nb alloy. Unfortunately, studies investigating this alloy showed that additively produced samples exhibit anisotropic microstructures. This anisotropy compromises the mechanical properties and complicates the loading state in the implant. Moreover, the minimum requirements as specified per designated standards such as ISO 5832-11 are not met. The remedy to this problem is performing a conventional heat treatment. As this route requires energy, infrastructure, labor, and expertise, which in turn mean time and money, many of the additive manufacturing benefits are negated. Thus, the goal of this work was to achieve better isotropy by applying only adapted additive manufacturing process parameters, specifically focusing on the build orientations. In this work, samples orientated in 90°, 45°, and 0° directions relative to the building platform were manufactured and tested. These tests included mechanical (tensile and fatigue tests) as well as microstructural analyses (SEM and EBSD). Subsequently, the results of these tests such as fractography were correlated with the acquired mechanical properties. These showed that 90°-aligned samples performed best under fatigue load and that all requirements specified by the standard regarding monotonic load were met.</jats:p>
Publishing Year
Journal Title
Crystals
Volume
14
Issue
2
Article Number
117
ISSN
LibreCat-ID

Cite this

Milaege D, Eschemann N, Hoyer K-P, Schaper M. Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion. Crystals. 2024;14(2). doi:10.3390/cryst14020117
Milaege, D., Eschemann, N., Hoyer, K.-P., & Schaper, M. (2024). Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion. Crystals, 14(2), Article 117. https://doi.org/10.3390/cryst14020117
@article{Milaege_Eschemann_Hoyer_Schaper_2024, title={Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion}, volume={14}, DOI={10.3390/cryst14020117}, number={2117}, journal={Crystals}, publisher={MDPI AG}, author={Milaege, Dennis and Eschemann, Niklas and Hoyer, Kay-Peter and Schaper, Mirko}, year={2024} }
Milaege, Dennis, Niklas Eschemann, Kay-Peter Hoyer, and Mirko Schaper. “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion.” Crystals 14, no. 2 (2024). https://doi.org/10.3390/cryst14020117.
D. Milaege, N. Eschemann, K.-P. Hoyer, and M. Schaper, “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion,” Crystals, vol. 14, no. 2, Art. no. 117, 2024, doi: 10.3390/cryst14020117.
Milaege, Dennis, et al. “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion.” Crystals, vol. 14, no. 2, 117, MDPI AG, 2024, doi:10.3390/cryst14020117.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar