Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type
M. Winkler, Open Mathematics 21 (2023).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Winkler, Michael
Abstract
<jats:title>Abstract</jats:title>
<jats:p>The Cauchy problem in <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_001.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:math>
<jats:tex-math>{{\mathbb{R}}}^{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_002.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>≥</m:mo>
<m:mn>2</m:mn>
</m:math>
<jats:tex-math>n\ge 2</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, for <jats:disp-formula id="j_math-2022-0578_eq_001">
<jats:alternatives>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_003.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block">
<m:mtable displaystyle="true">
<m:mtr>
<m:mtd columnalign="right">
<m:mfenced open="{" close="">
<m:mrow>
<m:mspace depth="1.25em" />
<m:mtable displaystyle="true">
<m:mtr>
<m:mtd columnalign="left">
<m:msub>
<m:mrow>
<m:mi>u</m:mi>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
</m:mrow>
</m:msub>
<m:mo>=</m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mi>u</m:mi>
<m:mo>−</m:mo>
<m:mrow>
<m:mo>∇</m:mo>
</m:mrow>
<m:mo>⋅</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>u</m:mi>
<m:mi>S</m:mi>
<m:mo>⋅</m:mo>
<m:mrow>
<m:mo>∇</m:mo>
</m:mrow>
<m:mi>v</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>,</m:mo>
</m:mtd>
</m:mtr>
<m:mtr>
<m:mtd columnalign="left">
<m:mn>0</m:mn>
<m:mo>=</m:mo>
<m:mi mathvariant="normal">Δ</m:mi>
<m:mi>v</m:mi>
<m:mo>+</m:mo>
<m:mi>u</m:mi>
<m:mo>,</m:mo>
</m:mtd>
</m:mtr>
</m:mtable>
</m:mrow>
</m:mfenced>
<m:mspace width="2.0em" />
<m:mspace width="2.0em" />
<m:mspace width="2.0em" />
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mo>⋆</m:mo>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mtd>
</m:mtr>
</m:mtable>
</m:math>
<jats:tex-math>\begin{array}{r}\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{u}_{t}=\Delta u-\nabla \cdot \left(uS\cdot \nabla v),\\ 0=\Delta v+u,\end{array}\right.\hspace{2.0em}\hspace{2.0em}\hspace{2.0em}\left(\star )\end{array}</jats:tex-math>
</jats:alternatives>
</jats:disp-formula> is considered for general matrices <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_004.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>S</m:mi>
<m:mo>∈</m:mo>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
<m:mo>×</m:mo>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:math>
<jats:tex-math>S\in {{\mathbb{R}}}^{n\times n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. A theory of local-in-time classical existence and extensibility is developed in a framework that differs from those considered in large parts of the literature by involving bounded classical solutions. Specifically, it is shown that for all non-negative initial data belonging to <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_005.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi mathvariant="normal">BUC</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>∩</m:mo>
<m:msup>
<m:mrow>
<m:mi>L</m:mi>
</m:mrow>
<m:mrow>
<m:mi>p</m:mi>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>{\rm{BUC}}\left({{\mathbb{R}}}^{n})\cap {L}^{p}\left({{\mathbb{R}}}^{n})</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> with some <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_006.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>p</m:mi>
<m:mo>∈</m:mo>
<m:mrow>
<m:mo>[</m:mo>
<m:mrow>
<m:mn>1</m:mn>
<m:mo>,</m:mo>
<m:mi>n</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>p\in \left[1,n)</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, there exist <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_007.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
<m:mo>∈</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:mi>∞</m:mi>
</m:mrow>
<m:mo>]</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>{T}_{\max }\in \left(0,\infty ]</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> and a uniquely determined <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_008.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>u</m:mi>
<m:mo>∈</m:mo>
<m:msup>
<m:mrow>
<m:mi>C</m:mi>
</m:mrow>
<m:mrow>
<m:mn>0</m:mn>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mrow>
<m:mo>[</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>;</m:mo>
<m:mspace width="0.33em" />
<m:mi mathvariant="normal">BUC</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>∩</m:mo>
<m:msup>
<m:mrow>
<m:mi>C</m:mi>
</m:mrow>
<m:mrow>
<m:mn>0</m:mn>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mrow>
<m:mo>[</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>;</m:mo>
<m:mspace width="0.33em" />
<m:msup>
<m:mrow>
<m:mi>L</m:mi>
</m:mrow>
<m:mrow>
<m:mi>p</m:mi>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>∩</m:mo>
<m:msup>
<m:mrow>
<m:mi>C</m:mi>
</m:mrow>
<m:mrow>
<m:mi>∞</m:mi>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
<m:mo>×</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>u\in {C}^{0}\left(\left[0,{T}_{\max });\hspace{0.33em}{\rm{BUC}}\left({{\mathbb{R}}}^{n}))\cap {C}^{0}\left(\left[0,{T}_{\max });\hspace{0.33em}{L}^{p}\left({{\mathbb{R}}}^{n}))\cap {C}^{\infty }\left({{\mathbb{R}}}^{n}\times \left(0,{T}_{\max }))</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> such that with <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_009.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>v</m:mi>
<m:mo>≔</m:mo>
<m:mi mathvariant="normal">Γ</m:mi>
<m:mo>⋆</m:mo>
<m:mi>u</m:mi>
</m:math>
<jats:tex-math>v:= \Gamma \star u</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, and with <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_010.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi mathvariant="normal">Γ</m:mi>
</m:math>
<jats:tex-math>\Gamma </jats:tex-math>
</jats:alternatives>
</jats:inline-formula> denoting the Newtonian kernel on <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_011.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:math>
<jats:tex-math>{{\mathbb{R}}}^{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, the pair <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_012.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>u</m:mi>
<m:mo>,</m:mo>
<m:mi>v</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>\left(u,v)</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> forms a classical solution of (<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_013.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mo>⋆</m:mo>
</m:math>
<jats:tex-math>\star </jats:tex-math>
</jats:alternatives>
</jats:inline-formula>) in <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_014.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
<m:mo>×</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>0</m:mn>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>{{\mathbb{R}}}^{n}\times \left(0,{T}_{\max })</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, which has the property that <jats:disp-formula id="j_math-2022-0578_eq_002">
<jats:alternatives>
<jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_015.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block">
<m:mspace width="0.1em" />
<m:mtext>if</m:mtext>
<m:mspace width="0.1em" />
<m:mspace width="0.33em" />
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
<m:mo><</m:mo>
<m:mi>∞</m:mi>
<m:mo>,</m:mo>
<m:mspace width="1.0em" />
<m:mstyle>
<m:mspace width="0.1em" />
<m:mtext>then both</m:mtext>
<m:mspace width="0.1em" />
</m:mstyle>
<m:mspace width="0.33em" />
<m:munder>
<m:mrow>
<m:mi>limsup</m:mi>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
<m:mo>↗</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
</m:munder>
<m:msub>
<m:mrow>
<m:mo>‖</m:mo>
<m:mi>u</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mo>⋅</m:mo>
<m:mo>,</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>‖</m:mo>
</m:mrow>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi>L</m:mi>
</m:mrow>
<m:mrow>
<m:mi>∞</m:mi>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
</m:msub>
<m:mo>=</m:mo>
<m:mi>∞</m:mi>
<m:mspace width="1.0em" />
<m:mspace width="0.1em" />
<m:mtext>and</m:mtext>
<m:mspace width="0.1em" />
<m:mspace width="1.0em" />
<m:munder>
<m:mrow>
<m:mi>limsup</m:mi>
</m:mrow>
<m:mrow>
<m:mi>t</m:mi>
<m:mo>↗</m:mo>
<m:msub>
<m:mrow>
<m:mi>T</m:mi>
</m:mrow>
<m:mrow>
<m:mi>max</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
</m:munder>
<m:msub>
<m:mrow>
<m:mo>‖</m:mo>
<m:mrow>
<m:mo>∇</m:mo>
</m:mrow>
<m:mi>v</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mo>⋅</m:mo>
<m:mo>,</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>‖</m:mo>
</m:mrow>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi>L</m:mi>
</m:mrow>
<m:mrow>
<m:mi>∞</m:mi>
</m:mrow>
</m:msup>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msup>
<m:mrow>
<m:mi mathvariant="double-struck">R</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msup>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:mrow>
</m:msub>
<m:mo>=</m:mo>
<m:mi>∞</m:mi>
<m:mo>.</m:mo>
</m:math>
<jats:tex-math>\hspace{0.1em}\text{if}\hspace{0.1em}\hspace{0.33em}{T}_{\max }\lt \infty ,\hspace{1.0em}\hspace{0.1em}\text{then both}\hspace{0.1em}\hspace{0.33em}\mathop{\mathrm{limsup}}\limits_{t\nearrow {T}_{\max }}\Vert u\left(\cdot ,t){\Vert }_{{L}^{\infty }\left({{\mathbb{R}}}^{n})}=\infty \hspace{1.0em}\hspace{0.1em}\text{and}\hspace{0.1em}\hspace{1.0em}\mathop{\mathrm{limsup}}\limits_{t\nearrow {T}_{\max }}\Vert \nabla v\left(\cdot ,t){\Vert }_{{L}^{\infty }\left({{\mathbb{R}}}^{n})}=\infty .</jats:tex-math>
</jats:alternatives>
</jats:disp-formula> An exemplary application of this provides a result on global classical solvability in cases when <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_016.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mo>∣</m:mo>
<m:mi>S</m:mi>
<m:mo>+</m:mo>
<m:mn mathvariant="bold">1</m:mn>
<m:mo>∣</m:mo>
</m:math>
<jats:tex-math>| S+{\bf{1}}| </jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is sufficiently small, where <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2022-0578_eq_017.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mn mathvariant="bold">1</m:mn>
<m:mo>=</m:mo>
<m:mi mathvariant="normal">diag</m:mi>
<m:mspace width="0.33em" />
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>1</m:mn>
<m:mo>,</m:mo>
<m:mrow>
<m:mo>…</m:mo>
</m:mrow>
<m:mo>,</m:mo>
<m:mn>1</m:mn>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>{\bf{1}}={\rm{diag}}\hspace{0.33em}\left(1,\ldots ,1)</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>.</jats:p>
Keywords
Publishing Year
Journal Title
Open Mathematics
Volume
21
Issue
1
ISSN
LibreCat-ID
Cite this
Winkler M. Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type. Open Mathematics. 2023;21(1). doi:10.1515/math-2022-0578
Winkler, M. (2023). Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type. Open Mathematics, 21(1). https://doi.org/10.1515/math-2022-0578
@article{Winkler_2023, title={Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type}, volume={21}, DOI={10.1515/math-2022-0578}, number={1}, journal={Open Mathematics}, publisher={Walter de Gruyter GmbH}, author={Winkler, Michael}, year={2023} }
Winkler, Michael. “Classical Solutions to Cauchy Problems for Parabolic–Elliptic Systems of Keller-Segel Type.” Open Mathematics 21, no. 1 (2023). https://doi.org/10.1515/math-2022-0578.
M. Winkler, “Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type,” Open Mathematics, vol. 21, no. 1, 2023, doi: 10.1515/math-2022-0578.
Winkler, Michael. “Classical Solutions to Cauchy Problems for Parabolic–Elliptic Systems of Keller-Segel Type.” Open Mathematics, vol. 21, no. 1, Walter de Gruyter GmbH, 2023, doi:10.1515/math-2022-0578.