Hausdorffness of certain nilpotent cohomology spaces
F. Januszewski, B. Sun, H. Ying, Journal of Functional Analysis 289 (2025).
Download
No fulltext has been uploaded.
Journal Article
| English
Author
Januszewski, Fabian;
Sun, Binyong;
Ying, Hao
Abstract
Let $(\pi,V)$ be a smooth representation of a compact Lie group $G$ on a
quasi-complete locally convex complex topological vector space. We show that
the Lie algebra cohomology space $\mathrm{H} ^\bullet(\mathfrak{u}, V)$ and the
Lie algebra homology space $\mathrm{H}_\bullet(\mathfrak{u}, V)$ are both
Hausdorff, where $\mathfrak{u}$ is the nilpotent radical of a parabolic
subalgebra of the complexified Lie algebra $\mathfrak{g}$ of $G$.
Publishing Year
Journal Title
Journal of Functional Analysis
Volume
289
Issue
10
ISSN
LibreCat-ID
Cite this
Januszewski F, Sun B, Ying H. Hausdorffness of certain nilpotent cohomology spaces. Journal of Functional Analysis. 2025;289(10).
Januszewski, F., Sun, B., & Ying, H. (2025). Hausdorffness of certain nilpotent cohomology spaces. Journal of Functional Analysis, 289(10).
@article{Januszewski_Sun_Ying_2025, title={Hausdorffness of certain nilpotent cohomology spaces}, volume={289}, number={10}, journal={Journal of Functional Analysis}, author={Januszewski, Fabian and Sun, Binyong and Ying, Hao}, year={2025} }
Januszewski, Fabian, Binyong Sun, and Hao Ying. “Hausdorffness of Certain Nilpotent Cohomology Spaces.” Journal of Functional Analysis 289, no. 10 (2025).
F. Januszewski, B. Sun, and H. Ying, “Hausdorffness of certain nilpotent cohomology spaces,” Journal of Functional Analysis, vol. 289, no. 10, 2025.
Januszewski, Fabian, et al. “Hausdorffness of Certain Nilpotent Cohomology Spaces.” Journal of Functional Analysis, vol. 289, no. 10, 2025.